Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 291

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2022

Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Koike, Yuko; Nemoto, Masashi; Tobita, Keiji; Yamada, Ryohei*; Uchiyama, Rei; Yamashita, Daichi; Nagai, Shinji; et al.

JAEA-Review 2023-046, 164 Pages, 2024/03

JAEA-Review-2023-046.pdf:4.2MB

The Nuclear Fuel Cycle Engineering Laboratories conducts environmental radiation monitoring around the reprocessing plant in accordance with the "Safety Regulations for Reprocessing Plant of JAEA, Part IV: Environmental Monitoring". This report summarizes the results of environmental radiation monitoring conducted during the period from April 2022 to March 2023 and the results of dose calculations for the surrounding public due to the release of radioactive materials into the atmosphere and ocean. In the results of the above environmental radiation monitoring, many items were affected by radioactive materials emitted from the accident at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, Incorporated (changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016), which occurred in March 2011. Also included as appendices are an overview of the environmental monitoring plan, an overview of measurement methods, measurement results and their changes over time, meteorological statistics results, radioactive waste release status, and an evaluation of the data which deviated of the normal range.

Journal Articles

Numerical interpretation of thermal desorption spectra of hydrogen from high-carbon ferrite-austenite dual-phase steel

Ebihara, Kenichi; Sekine, Daiki*; Sakiyama, Yuji*; Takahashi, Jun*; Takai, Kenichi*; Omura, Tomohiko*

International Journal of Hydrogen Energy, 48(79), p.30949 - 30962, 2023/09

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

To understand hydrogen embrittlement (HE), which is one of the stress corrosion cracking of steel materials, it is necessary to know the H distribution in steel, which can be effectively interpreted by numerical simulation of thermal desorption spectra. In weld metals and TRIP steels, residual austenite significantly influences the spectra, but a clear H distribution is not well known. In this study, an originally coded two-dimensional model was used to numerically simulate the previously reported spectra of high-carbon ferritic-austenitic duplex stainless steels, and it was found that H is mainly trapped at the carbide surface when the amount of H in the steel is low and at the duplex interface when the amount of H is high. It was also found that the thickness dependence of the H desorption peak for the interface trap site is caused by a different reason than the conventional one.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2021

Nakada, Akira; Kanai, Katsuta; Seya, Natsumi; Nishimura, Shusaku; Futagawa, Kazuo; Nemoto, Masashi; Tobita, Keiji; Yamada, Ryohei*; Uchiyama, Rei; Yamashita, Daichi; et al.

JAEA-Review 2022-078, 164 Pages, 2023/03

JAEA-Review-2022-078.pdf:2.64MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2021 to March 2022. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

Journal Articles

Response characteristics of a lithium glass scintillator for gamma-ray and neutron

Lee, J.; Ito, Fumiaki*; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Koizumi, Mitsuo; Hori, Junichi*; Terada, Kazushi*

Dai-43-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2022/11

no abstracts in English

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:5 Percentile:87.42(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Development of a neutron scintillator for a compact NRTA system, 2

Lee, J.; Hironaka, Kota; Ito, Fumiaki*; Takahashi, Tone; Koizumi, Mitsuo; Hori, Junichi*; Terada, Kazushi*

KURNS Progress Report 2021, P. 97, 2022/07

no abstracts in English

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2020

Nakada, Akira; Nakano, Masanao; Kanai, Katsuta; Seya, Natsumi; Nishimura, Shusaku; Nemoto, Masashi; Tobita, Keiji; Futagawa, Kazuo; Yamada, Ryohei; Uchiyama, Rei; et al.

JAEA-Review 2021-062, 163 Pages, 2022/02

JAEA-Review-2021-062.pdf:2.87MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2020 to March 2021. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

Journal Articles

Development of a neutron sintillator for a compact NRTA system

Ito, Fumiaki*; Lee, J.; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Hori, Junichi*; Terada, Kazushi*; Koizumi, Mitsuo

KURNS Progress Report 2020, P. 98, 2021/08

A compact Nuclear Resonance Transmission Analysis (NRTA) system using a Laser Driven Neutron Source (LDNS) has been developed as a part of the development of nuclear non-proliferation technology supported by the MEXT. In NRTA, the neutron energy emitted from a pulsed neutron source is measured using the time-of-flight (TOF) method. LDNS is of interest because of its short pulse width, which is necessary for accurate TOF measurements over short flight distances. In the short-distance TOF measurement, there will be a large gamma-ray background event due to the coincidence of the timing of the arrival of 2.2 MeV gamma-rays due to neutron capture on hydrogen in the moderator and the timing of the arrival of neutrons around the resonance energy. Since the LDNS is still under development, the neutron flux is not sufficient and it is desirable to use a detector with high detection efficiency. For these reasons, we have developed a detector with low efficiency to gamma-rays and high efficiency to neutrons (multilayer neutron detector). As one of the results of this year's experiments, we confirmed that the multilayer neutron detector have low sensitivity to gamma-rays.

Journal Articles

Radioactivity and radionuclides in deciduous teeth formed before the Fukushima-Daiichi Nuclear Power Plant accident

Takahashi, Atsushi*; Chiba, Mirei*; Tanahara, Akira*; Aida, Jun*; Shimizu, Yoshinaka*; Suzuki, Toshihiko*; Murakami, Shinobu*; Koarai, Kazuma; Ono, Takumi*; Oka, Toshitaka; et al.

Scientific Reports (Internet), 11(1), p.10355_1 - 10355_11, 2021/05

 Times Cited Count:6 Percentile:40.04(Multidisciplinary Sciences)

Journal Articles

Polarization analysis for small-angle neutron scattering with a $$^{3}$$He spin filter at a pulsed neutron source

Okudaira, Takuya; Ueda, Yuki; Hiroi, Kosuke; Motokawa, Ryuhei; Inamura, Yasuhiro; Takata, Shinichi; Oku, Takayuki; Suzuki, Junichi*; Takahashi, Shingo*; Endo, Hitoshi*; et al.

Journal of Applied Crystallography, 54(2), p.548 - 556, 2021/04

 Times Cited Count:3 Percentile:32.2(Chemistry, Multidisciplinary)

Neutron polarization analysis (NPA) for small-angle neutron scattering (SANS) experiments using a pulsed neutron source was successfully achieved by applying a $$^{3}$$He spin filter as a spin analyzer for the scattered neutrons. The $$^{3}$$He spin filter covers a sufficient solid angle for performing SANS experiments, and the relaxation time of the $$^{3}$$He polarization is sufficient for continuous use over a few days, thus reaching the typical duration required for a complete set of SANS experiments. Although accurate evaluation of the incoherent neutron scattering, which is predominantly attributable to hydrogen atoms in samples, is practically difficult using calculations based on the sample elemental composition, the developed NPA approach with consideration of the influence of multiple neutron scattering enabled reliable decomposition of the SANS intensity distribution into the coherent and incoherent scattering components. To date, NPA has not been well established as a standard technique for SANS experiments at pulsed neutron sources. This work is anticipated to greatly contribute to the accurate determination of the coherent neutron scattering component for scatterers in various types of organic sample systems in SANS experiments at J-PARC.

JAEA Reports

Manufacture of substitutive assemblies for MONJU reactor decommissioning

Sakakibara, Hiroshi; Aoki, Nobuhiro; Muto, Masahiro; Otabe, Jun; Takahashi, Kenji*; Fujita, Naoyuki*; Hiyama, Kazuhiko*; Suzuki, Hirokazu*; Kamogawa, Toshiyuki*; Yokosuka, Toru*; et al.

JAEA-Technology 2020-020, 73 Pages, 2021/03

JAEA-Technology-2020-020.pdf:8.26MB

The decommissioning is currently in progress at the prototype fast breeder reactor Monju. Fuel assemblies will be taken out of its core for the first step of the great task. Fuel assemblies stand on their own spike plugged into a socket on the core support plate and support with adjacent assemblies through their housing pads each other, resulting in steady core structure. For this reason, some substitutive assemblies are necessary for the purpose of discharging the fuel assemblies of the core. Monju side commissioned, therefore, Plutonium Fuel Development Center to manufacture the substitutive assemblies and the Center accepted it. This report gives descriptions of design, manufacture, and shipment in regard to the substitutive assemblies.

Journal Articles

The Report on the Meeting of the Young Researchers' association of JHPS "Issues following the revision of radiation dose limits for the lens of the eye"

Kataoka, Noriaki*; Nakajima, Junya; Otsu, Saori; Takahashi, Akina; Takamiya, Kei; Umeda, Masayuki; Nishiono, Kanoko*

Hoken Butsuri (Internet), 56(1), p.28 - 31, 2021/03

no abstracts in English

Journal Articles

Recent status & improvements of the RCS vacuum system

Kamiya, Junichiro; Kotoku, Hirofumi; Hikichi, Yusuke*; Takahashi, Hiroki; Yamamoto, Kazami; Kinsho, Michikazu; Wada, Kaoru*

JPS Conference Proceedings (Internet), 33, p.011023_1 - 011023_6, 2021/03

The vacuum system is the key for the stable high power beam operation in J-PARC 3 GeV rapid cycling synchrotron (RCS), because the gas molecules in the beam line make the beam loss due to the scattering. The more than 10 years operation of the RCS vacuum system showed that the ultra-high vacuum (UHV) has been stably maintained by the several developments. The challenges for lower beam line pressure will exist in a future operation with higher beam power. For such challenge, a TMP with a rotor of titanium alloy, which have much higher mechanical strength than aluminum allow for the normal rotter, has been developed. Overcoming the difficulties of the machining performance of the titanium alloy rotor was successfully manufactured. We will report the summary of the 10 years operation of the RCS vacuum system and the incoming developments towards the XHV.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2019

Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Seya, Natsumi; Nishimura, Shusaku; Hosomi, Kenji; Nagaoka, Mika; Yokoyama, Hiroya; Matsubara, Natsumi; et al.

JAEA-Review 2020-069, 163 Pages, 2021/02

JAEA-Review-2020-069.pdf:4.78MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2019 to March 2020. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

Journal Articles

Calculations for ambient dose equivalent rates in nine forests in eastern Japan from $$^{134}$$Cs and $$^{137}$$Cs radioactivity measurements

Malins, A.; Imamura, Naohiro*; Niizato, Tadafumi; Takahashi, Junko*; Kim, M.; Sakuma, Kazuyuki; Shinomiya, Yoshiki*; Miura, Satoru*; Machida, Masahiko

Journal of Environmental Radioactivity, 226, p.106456_1 - 106456_12, 2021/01

 Times Cited Count:6 Percentile:40.04(Environmental Sciences)

Journal Articles

Radionuclides from the Fukushima Daiichi Nuclear Power Plant in terrestrial systems

Onda, Yuichi*; Taniguchi, Keisuke*; Yoshimura, Kazuya; Kato, Hiroaki*; Takahashi, Junko*; Wakiyama, Yoshifumi*; Coppin, F.*; Smith, H.*

Nature Reviews Earth & Environment (Internet), 1(12), p.644 - 660, 2020/12

 Times Cited Count:91 Percentile:90.09(Environmental Sciences)

Journal Articles

Author correction; Radionuclides from the Fukushima Daiichi Nuclear Power Plant in terrestrial systems

Onda, Yuichi*; Taniguchi, Keisuke*; Yoshimura, Kazuya; Kato, Hiroaki*; Takahashi, Junko*; Wakiyama, Yoshifumi*; Coppin, F.*; Smith, H.*

Nature Reviews Earth & Environment (Internet), 1(12), P. 694_1, 2020/12

 Times Cited Count:0 Percentile:0.26(Environmental Sciences)

Journal Articles

Development and application of a $$^3$$He neutron spin filter at J-PARC

Okudaira, Takuya; Oku, Takayuki; Ino, Takashi*; Hayashida, Hirotoshi*; Kira, Hiroshi*; Sakai, Kenji; Hiroi, Kosuke; Takahashi, Shingo*; Aizawa, Kazuya; Endo, Hitoshi*; et al.

Nuclear Instruments and Methods in Physics Research A, 977, p.164301_1 - 164301_8, 2020/10

 Times Cited Count:11 Percentile:78.21(Instruments & Instrumentation)

Journal Articles

Utilizing PUNITA experiments to evaluate fundamental delayed gamma-ray spectroscopy interrogation requirements for nuclear safeguards

Rodriguez, D.; Koizumi, Mitsuo; Rossi, F.; Seya, Michio; Takahashi, Tone; Bogucarska, T.*; Crochemore, J.-M.*; Pedersen, B.*; Takamine, Jun

Journal of Nuclear Science and Technology, 57(8), p.975 - 988, 2020/08

 Times Cited Count:4 Percentile:44.4(Nuclear Science & Technology)

Journal Articles

Temporal change in radiological environments on land after the Fukushima Daiichi Nuclear Power Plant accident

Saito, Kimiaki; Mikami, Satoshi; Ando, Masaki; Matsuda, Norihiro; Kinase, Sakae; Tsuda, Shuichi; Sato, Tetsuro*; Seki, Akiyuki; Sanada, Yukihisa; Wainwright-Murakami, Haruko*; et al.

Journal of Radiation Protection and Research, 44(4), p.128 - 148, 2019/12

291 (Records 1-20 displayed on this page)