Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 108

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Depth profile and inventory of $$^{36}$$Cl in soil near the Fukushima Dai-ichi Nuclear Power Plant

Ota, Yuki*; Sueki, Keisuke*; Sasa, Kimikazu*; Takahashi, Tsutomu*; Matsunaka, Tetsuya*; Matsumura, Masumi*; Tosaki, Yuki*; Honda, Maki*; Hosoya, Seiji*; Takano, Kenta*; et al.

JAEA-Conf 2018-002, p.99 - 102, 2019/02

no abstracts in English

Journal Articles

Behavior of Nb$$_{3}$$Sn cable assembled with conduit for ITER central solenoid

Nabara, Yoshihiro; Suwa, Tomone; Takahashi, Yoshikazu; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Sakurai, Takeru; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; et al.

IEEE Transactions on Applied Superconductivity, 25(3), p.4200305_1 - 4200305_5, 2015/06

 Times Cited Count:1 Percentile:85.66(Engineering, Electrical & Electronic)

Journal Articles

Nuclear energy (Technical topic); Development of ITER toroidal field (TF) coil

Hemmi, Tsutomu; Kajitani, Hideki; Takano, Katsutoshi; Matsui, Kunihiro; Koizumi, Norikiyo

Yosetsu Gakkai-Shi, 83(6), p.497 - 502, 2014/09

JAEA, serving as the Japan Domestic Agency (JADA) in the ITER project, is responsible for the procurement of 9 TF coils. In the TF coil, the radial plate (RP) structure is selected to improve electrical and mechanical reliability of the electrical insulation. Since the superconductor is degraded by the bending strain of 0.1% after the reaction heat-treatment, the conductor is inserted into the RP after winding to D-shape and the heat-treatment. To insert the conductor into the RP, the winding and RP groove length must be controlled with accuracy of 0.02% (7 mm on the 1 turn of 34 m). Accordingly, the targets for solving this issue are as follows: (1) Development of manufacturing procedure of the RP; (2) Development of winding head to achieve highly accurate winding; (3) Estimation of the conductor elongation after the heat-treatment. Therefore, JAEA can establish manufacturing plan for the TF coil as a result of the R&D for these targets.

Journal Articles

ITER magnet systems; From qualification to full scale construction

Nakajima, Hideo; Hemmi, Tsutomu; Iguchi, Masahide; Nabara, Yoshihiro; Matsui, Kunihiro; Chida, Yutaka; Kajitani, Hideki; Takano, Katsutoshi; Isono, Takaaki; Koizumi, Norikiyo; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03

The ITER organization and 6 Domestic Agencies (DA) have been implementing the construction of ITER superconducting magnet systems. Four DAs have already started full scale construction of Toroidal Field (TF) coil conductors. The qualification of the radial plate manufacture has been completed, and JA and EU are ready for full scale construction. JA has qualified full manufacturing processes of the winding pack with a 1/3 prototype and made 2 full scale mock-ups of the basic segments of TF coil structure to optimize and industrialize the manufacturing process. Preparation and qualification of the full scale construction of the TF coil winding is underway by EU. Procurement of the manufacturing equipment is near completion and qualification of manufacturing processes has already started. The constructions of other components of the ITER magnet systems are also going well towards the main goal of the first plasma in 2020.

JAEA Reports

Covariances of resonance self-shielding factor and its temperature gradient for uncertainty evaluation of Doppler reactivity

Zukeran, Atsushi*; Chiba, Go; Otsuka, Naohiko*; Ishikawa, Makoto; Takano, Hideki*

JAEA-Research 2008-091, 162 Pages, 2009/02

JAEA-Research-2008-091-01.pdf:5.8MB
JAEA-Research-2008-091-02.pdf:45.78MB

Uncertainty of Doppler reactivity is theoretically formulated and then uncertainties of self-shielding factor and its temperature gradient due to errors of resonance parameters were evaluated from NJOY output. Sensitivity analysis was made for $$^{235}$$U, $$^{238}$$U, $$^{239}$$Pu and $$^{240}$$Pu of JENDL-3.3 based on JFS-3 70 group structure. Resultant sensitivity coefficients are provided for the uncertainty evaluation of Doppler reactivity.

JAEA Reports

ERRORF; A Code to calculate covariance of self-shielding factor and its temperature gradient

Otsuka, Naohiko*; Zukeran, Atsushi*; Takano, Hideki*; Chiba, Go; Ishikawa, Makoto

JAEA-Data/Code 2008-012, 17 Pages, 2008/06

JAEA-Data-Code-2008-012.pdf:1.31MB

A computer code, ERRORF, was developed for calculation of covariance of self-shielding factor and its temperature gradient. This code is based on several modules. With this code, covariance of self-shielding factor and its temperature gradient can be calculated from evaluated nuclear library in the ENDF format.

Journal Articles

Covariance analyses of self-shielding factor and its temperature gradient for uranium-238 neutron capture reaction

Otsuka, Naohiko; Zukeran, Atsushi*; Takano, Hideki*; Chiba, Go; Ishikawa, Makoto

Journal of Nuclear Science and Technology, 45(3), p.195 - 210, 2008/03

 Times Cited Count:2 Percentile:78.3(Nuclear Science & Technology)

Covariances of the self-shielding factor and its temperature gradient for the uranium-238 neutron capture reaction have been evaluated from the resonance parameter covariance matrix and sensitivity of the self-shielding factor and its temperature gradient to microscopic nuclear data. The resonance parameters and their covariance matrix for uranium-238 were taken from JENDL-3.3, while the sensitivity coefficients were calculated by varying resonance parameters and temperature. A set of computer code modules has been developed for calculation of the sensitivity coefficients at numerous resonance levels. The present result shows that the correlation among resonance parameters yields a substantial contribution to the variances of the self-shielding factor and its temperature gradient. In addition to the variances of these quantities, their correlation matrices in the JFS-3 70 group structure are also obtained.

Journal Articles

Concept of transmutation experimental facility

Oigawa, Hiroyuki; Sasa, Toshinobu; Kikuchi, Kenji; Nishihara, Kenji; Kurata, Yuji; Umeno, Makoto*; Tsujimoto, Kazufumi; Saito, Shigeru; Futakawa, Masatoshi; Mizumoto, Motoharu; et al.

Proceedings of 4th International Workshop on the Utilisation and Reliability of High Power Proton Accelerators, p.507 - 517, 2005/11

Under the framework of J-PARC, the Japan Atomic Energy Research Institute (JAERI) plans to construct the Transmutation Experimental Facility (TEF). The TEF consists of two facilities: the Transmutation Physics Experimental Facility (TEF-P) and the ADS Target Test Facility (TEF-T). The TEF-P is a critical facility which can accept a 600 MeV - 10 W proton beam. The TEF-T is a material irradiation facility using a 600 MeV - 200 kW proton beam, where a Pb-Bi target is installed, but neutron multiplication by nuclear fuel will not be attempted. This report describes the purposes of the facility, the present status of the conceptual design, and the expected experiments to be performed.

Journal Articles

Design study around beam window of ADS

Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Kikuchi, Kenji; Kurata, Yuji; Sasa, Toshinobu; Umeno, Makoto*; Nishihara, Kenji; Saito, Shigeru; Mizumoto, Motoharu; Takano, Hideki*; et al.

Proceedings of 4th International Workshop on the Utilisation and Reliability of High Power Proton Accelerators, p.325 - 334, 2005/11

The Japan Atomic Energy Research Institute (JAERI) is conducting the research and development (R&D) on the Accelerator-Driven Subcritical System (ADS) for the effective transmutation of minor actinides (MAs). The ADS proposed by JAERI is the 800 MWth, Pb-Bi cooled, tank-type subcritical reactor loaded with (MA+Pu) nitride fuel. The Pb-Bi is also used as the spallation target. In this study, the feasibility of the ADS was discussed with putting the focus on the design around the beam window. The partition wall was placed between the target region and the ductless-type fuel assemblies to keep the good cooling performance for the hot-spot fuel pin. The flow control nozzle was installed to cool the beam window effectively. The thermal-hydraulic analysis showed that the maximum temperature at the outer surface of the beam window could be repressed below 500 $$^{circ}$$C even in the case of the maximum beam power of 30 MW. The stress caused by the external pressure and the temperature distribution of the beam window was also below the allowable limit.

JAEA Reports

Conceptual study of transmutation experimental facility, 2; Study on ADS target test facility

Sasa, Toshinobu; Umeno, Makoto*; Mizubayashi, Hiroshi*; Mori, Keijiro*; Futakawa, Masatoshi; Saito, Shigeru; Kai, Tetsuya; Nakai, Kimikazu*; Zako, Akira*; Kasahara, Yoshiyuki*; et al.

JAERI-Tech 2005-021, 114 Pages, 2005/03

JAERI-Tech-2005-021.pdf:9.66MB

To perform the research and development for accelerator-driven system (ADS), Japan Atomic Energy Research Institute (JAERI) plans to build a Transmutation Experimental Facility under the JAERI-KEK joint J-PARC program. Transmutation Experimental Facility consists of two buildings, Transmutation Physics Experimental Facility to make reactor physics experiment with subcritical core, and ADS Target Test Facility for the preparation of irradiation database for various structural materials. In this report, purpose to build, experimental schedule, and design study of the ADS target test facility with drawer type spallation target are summarized.

Journal Articles

R&D activities on accelerator-driven transmutation system in JAERI

Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Kikuchi, Kenji; Kurata, Yuji; Sasa, Toshinobu; Umeno, Makoto*; Saito, Shigeru; Nishihara, Kenji; Mizumoto, Motoharu; Takano, Hideki*; et al.

EUR-21227 (CD-ROM), p.483 - 493, 2005/00

JAERI is conducting the study on the dedicated transmutation system using the accelerator driven subcritical system (ADS). A subcritical reactor with the thermal power of 800 MW has been proposed. Many research and development activities including the conceptual design study are under way and planned at JAERI to examine the feasibility of the ADS. In the field of the proton accelerator, a superconducting LINAC is being developed. In the field of the spallation target using lead-bismuth eutectic (LBE), material corrosion, thermal-hydraulics, polonium behavior, and irradiation effect on materials are being studied. Moreover, in the framework of the J-PARC project, JAERI plans to construct the Transmutation Experimental Facility (TEF) to study the feasibility of the ADS using a high-energy proton beam and nuclear fuel and to establish the technology for the LBE spallation target and relevant materials.

Journal Articles

Research and development on accelerator-driven transmutation system at JAERI

Sasa, Toshinobu; Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Nishihara, Kenji; Kikuchi, Kenji; Kurata, Yuji; Saito, Shigeru; Futakawa, Masatoshi; Umeno, Makoto*; Ouchi, Nobuo; et al.

Nuclear Engineering and Design, 230(1-3), p.209 - 222, 2004/05

 Times Cited Count:29 Percentile:10.72(Nuclear Science & Technology)

JAERI carries out research and development on accelerator-driven system (ADS) to transmute minor actinides and long-lived fission products. The system is composed of high intensity proton accelerator, lead-bismuth spallation target and lead-bismuth cooled subcritical core with nitride fuel. About 2,500 kg of minor actinide is loaded into the subcritical core. Annual transmutation amount using this system is 250 kg with 800MW of thermal output. A superconducting linear accelerator with the beam power of 30MW is connected to drive the subcritical core. Many research and development activities are under way and planned in the fields of subcritical core design, spallation target technology, lead-bismuth handling technology, accelerator development, and minor actinide fuel development. Especially, to study and evaluate the feasibility of the ADS from physics and engineering aspects, the Transmutation Experimental Facility (TEF) is proposed under a framework of the High-Intensity Proton Accelerator Project.

Journal Articles

Research and development activities for accelerator driven system at JAERI

Tsujimoto, Kazufumi; Sasa, Toshinobu; Nishihara, Kenji; Oigawa, Hiroyuki; Takano, Hideki*

Proceedings of International Conference on Physics of Fuel Cycles and Advanced Nuclear Systems; Global Developments (PHYSOR 2004) (CD-ROM), 8 Pages, 2004/04

The Japan Atomic Energy Research Institute (JAERI) is developing an Accelerator Driven System (ADS) for transmutation of nuclear waste such as minor actinide (MA) and long-lived fission product (LLFP). To study and evaluate the feasibility of ADS by physical and engineering viewpoints, the Transmutation Experimental Facility (TEF) is proposed under a framework of J-PARC (Japan Proton Accelerator Research Complex) project. The TEF consists of two facilities named as Transmutation Physics Experimental Facility (TEF-P) and ADS Target Test Facility (TEF-T). The TEF-P consists of a zero-power critical assembly which is operated with a low power proton beam to research the reactor physics and the controllability of ADS. The TEF-T is a facility for material irradiation and partial mockup of beam window which can accept a maximum 600MeV-200kW proton beam into the Pb-Bi eutectic target. The purposes, experimental items and the specifications of the facilities are described.

Journal Articles

Research activities of Japanese Nuclear Data Committee in the fiscal years of 2001 and 2002

Igashira, Masayuki*; Shibata, Keiichi; Takano, Hideki*; Yamano, Naoki*; Matsunobu, Hiroyuki*; Kitao, Kensuke*; Katakura, Junichi; Nakagawa, Tsuneo; Hasegawa, Akira; Iwasaki, Tomohiko*; et al.

Nippon Genshiryoku Gakkai Wabun Rombunshi, 3(1), p.128 - 139, 2004/03

no abstracts in English

Journal Articles

Neutronics design for lead-bismuth cooled accelerator-driven system for transmutation of minor actinide

Tsujimoto, Kazufumi; Sasa, Toshinobu; Nishihara, Kenji; Oigawa, Hiroyuki; Takano, Hideki

Journal of Nuclear Science and Technology, 41(1), p.21 - 36, 2004/01

 Times Cited Count:100 Percentile:0.92(Nuclear Science & Technology)

Neutronics design study was performed for lead-bismuth cooled accelerator-driven system (ADS) to transmute minor actinides. Early study for ADS indicated two problems: a large burnup reactivity swing and a significant peaking factor. To solve these problems, effect of design parameters on neutronics characteristics were searched. Parametric survey calculations were performed considering fuel cycle consisting of burnup and recycle. The results showed that burnup reactivity swing depends on the plutonium fraction in the initial fuel loading, and the lead-bismuth buffer region and the two-zone loading were effective for solving the problems. Moreover, an optimum value for the effective multiplication factor was also evaluated using reactivity coefficients. From the result, the maximum allowable value of the effective multiplication factor for a practical ADS can be set at 0.97. Consequently, a new core concept combining the buffer region and the two-zone loading was proposed base on the results of the parametric survey.

JAEA Reports

Conceptual study of transmutation experimental facility, 4; Study on safety analysis of transmutation physics experiment facility

Tsujimoto, Kazufumi; Tazawa, Yujiro; Oigawa, Hiroyuki; Sasa, Toshinobu; Takano, Hideki

JAERI-Tech 2003-085, 158 Pages, 2003/11

JAERI-Tech-2003-085.pdf:7.79MB

A safety analysis was performed for the Transmutation Physics Experiment Facility which was to research and develop the reactor physics aspects of the nuclear transmutation technology using the accelerator driven subcritical system. Design policies were evaluated for design of each equipment and system which had important role from view point of safety. Classification of safety class for reactor building, system, and equipment was also reconsidered. Based on the results of safety design policy, acceptance criteria for safety evaluation were reestablished and preliminary analysis were performed. Public exposure by the accident for site appropriateness assessment was evaluated based on revised guidelines in safety evaluation contained in the 1990 Recommendations of ICRP. A recritical event was analyzed by utilizing the newest knowledge for core disruptive accident and calculation code as the beyond design basis accident. The analytical results showed that the isolation capability of the container buildings was ensured against the recritical accident.

Journal Articles

Recent activities of Pb-Bi technology for ADS at JAERI

Kikuchi, Kenji; Saito, Shigeru; Kurata, Yuji; Futakawa, Masatoshi; Sasa, Toshinobu; Oigawa, Hiroyuki; Umeno, Makoto*; Mori, Keijiro*; Takano, Hideki; Wakai, Eiichi

Proceedings of 11th International Conference on Nuclear Engineering (ICONE-11) (CD-ROM), 7 Pages, 2003/04

In order to construct ADS Target Test facility in J-PARC project the research and development on Pb-Bi technology have been carried, which cover target design with computer simulation, flowing loop test, stagnant corrosion test, oxygen sensor and cleaning techniques. Obtained results are as follows: Corrosion rate of SUS316 under flowing Pb-Bi at 1m/s at 450$$^{circ}$$C is 0.1 mm / 3000 hrs. Fe and Cr were melted into lead bismuth from SS316 in the high temperature part and deposited in the low-temperature part according to the difference of solubility. The corrosion thickness decreases with increasing Cr content in the stagnant corrosion test at saturated oxygen concentration. Reliable oxygen sensors are to be developed by using suitable reference electrodes. As a result of cleaning tests, blushing process was needed to remove Pb-Bi effectively after immersion in the silicon oil. The mixed acid easily dissolved Pb-Bi and removed almost perfectly. But specimens themselves were affected by coloring.

Journal Articles

Research and development on accelerator-driven transmutation system at JAERI

Sasa, Toshinobu; Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Nishihara, Kenji; Kikuchi, Kenji; Kurata, Yuji; Saito, Shigeru; Futakawa, Masatoshi; Umeno, Makoto*; Ouchi, Nobuo; et al.

Proceedings of 11th International Conference on Nuclear Engineering (ICONE-11) (CD-ROM), 9 Pages, 2003/04

JAERI carries out research and development on accelerator-driven system (ADS) to transmute minor actinides and long-lived fission products in high-level radioactive waste. The system is composed of high intensity proton accelerator, lead-bismuth spallation target and lead-bismuth cooled subcritical core with nitride fuel. About 2500 kg of minor actinide is loaded into the subcritical core. Annual transmutation amount using this system is 250 kg with 800MW of thermal output. A superconducting linear accelerator with the beam power of 20 - 30MW is connected to drive the subcritical core. The nitride fuel without uranium, such as (Np, Am, Pu)N, is selected. The fuel irradiated in the ADS is reprocessed by pyrochemical process followed by the re-fabrication of the fuel. Many research and development activities are under way. Especially, to study and evaluate the feasibility of the ADS from physics and engineering aspects, the Transmutation Experimental Facility (TEF) is proposed under a framework of the High-Intensity Proton Accelerator Project.

Journal Articles

Research and development program on accelerator driven system in JAERI

Oigawa, Hiroyuki; Ouchi, Nobuo; Kikuchi, Kenji; Tsujimoto, Kazufumi; Kurata, Yuji; Sasa, Toshinobu; Takano, Hideki; Nishihara, Kenji; Saito, Shigeru; Futakawa, Masatoshi; et al.

Proceedings of GLOBAL2003 Atoms for Prosperity; Updating Eisenhower's Global Vision for Nuclear Energy (CD-ROM), p.1374 - 1379, 2003/00

JAERI is developing an Accelerator Driven System (ADS) for transmutation of nuclear waste such as minor actinide and long-lived fission product. To acquire the knowledge and the elemental technology that are necessary for the validation of engineering feasibility of ADS, JAERI has started a comprehensive research and development (R&D) program since 2002. The first stage of the program will be continued for three years. The program is conducted by JAERI with many institutes, universities and private companies. Items of R&D are concentrated on three technical areas peculiar to ADS: (1) a superconducting linear accelerator, (2) lead-bismuth eutectic as spallation target and core coolant, and (3) subcritical core design and physics. The outline and the preliminary results of the program are summarized in the present report.

Journal Articles

Japanese evaluated nuclear data library version 3 revision-3; JENDL-3.3

Shibata, Keiichi; Kawano, Toshihiko*; Nakagawa, Tsuneo; Iwamoto, Osamu; Katakura, Junichi; Fukahori, Tokio; Chiba, Satoshi; Hasegawa, Akira; Murata, Toru*; Matsunobu, Hiroyuki*; et al.

Journal of Nuclear Science and Technology, 39(11), p.1125 - 1136, 2002/11

 Times Cited Count:608 Percentile:6.06(Nuclear Science & Technology)

Evaluation for JENDL-3.3 has been performed by considering the accumulated feedback information and various benchmark tests of the previous library JENDL-3.2. The major problems of the JENDL-3.2 data were solved by the new library: overestimation of criticality values for thermal fission reactors was improved by the modifications of fission cross sections and fission neutron spectra for $$^{235}$$U; incorrect energy distributions of secondary neutrons from important heavy nuclides were replaced with statistical model calculations; the inconsistency between elemental and isotopic evaluations was removed for medium-heavy nuclides. Moreover, covariance data were provided for 20 nuclides. The reliability of JENDL-3.3 was investigated by the benchmark analyses on reactor and shielding performances. The results of the analyses indicate that JENDL-3.3 predicts various reactor and shielding characteristics better than JENDL-3.2.

108 (Records 1-20 displayed on this page)