Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 211

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of Cs separation methods from large amounts of soil samples to determine the $$^{135}$$Cs/$$^{137}$$Cs isotope ratio

Shimada, Asako; Tsukahara, Takehiko*; Nomura, Masao*; Takeda, Seiji

Journal of Radioanalytical and Nuclear Chemistry, 333(12), p.6297 - 6310, 2024/12

 Times Cited Count:0 Percentile:0.00(Chemistry, Analytical)

Journal Articles

Study on public exposure risk assessment for dismantling of radioactive components in decommissioning phase of nuclear reactor facilities

Shimada, Taro; Kabata, Kazuhiko*; Takai, Shizuka; Takeda, Seiji

Proceedings of Probabilistic Safety Assessment and Management & Asian Symposium on Risk Assessment and Management (PSAM17 & ASRAM2024) (Internet), 10 Pages, 2024/10

Nuclear regulatory inspections during the decommissioning phase of nuclear power plants need to be conducted based on risk information, but a method for quantitatively evaluating this risk has not been developed. Therefore, in this study, an event tree of accident events that may occur in the decommissioning phase has been developed, and a code DecAssess-R has been developed to evaluate the exposure risk, which is expressed as the product of the exposure dose and probability of occurrence according to the accident sequence for each equipment to be dismantled. In particular, we have taken into account that the amount of mobile radioactivity that may accumulate in HEPA filters and be released all at once during an accident varies temporally and spatially with the progress of dismantling work. The event tree was constructed based on the results of the survey of domestic and international trouble information in the decommissioning phase and similar dismantling and replacement operations. The event frequencies are based on information from general industries, and the event progression probabilities are based on the equipment failure probabilities in the operation phase. The safety functions to be reduced with the progress of decommissioning were taken into account according to the dismantling work schedule. As a result of the exposure risk assessment for dismantling operations of BWRs and PWRs in Japan, the exposure risk for fire events was the largest. In particular, the exposure risk was greater for the dismantling of components in the reactor building by airborne cutting than for the dismantling of reactor internals, which has the greatest radioactivity in underwater dismantling.

JAEA Reports

Procedure on confirmation of completion of decommissioning of nuclear facilities (Contract research)

Shimada, Taro; Shimada, Asako; Miwa, Kazuji*; Nabekura, Nobuhide*; Sasaki, Toshihisa*; Takai, Shizuka; Takeda, Seiji

JAEA-Research 2024-004, 115 Pages, 2024/06

JAEA-Research-2024-004.pdf:6.02MB

We have studied the confirmation method for the termination of decommissioning of nuclear facilities based on the site release flow presented at the Nuclear Regulation Authority (NRA) study team meeting in 2017, and organized it as a procedure for the site soil. First, the effects of radionuclides released by the Fukushima Daiichi Nuclear Power Station accident are excluded as background radioactivity, and the distribution of radioactivity concentration of facility origin on the site is evaluated using geostatistical method kriging. Then, considering the downstream transport of sediment by surface runoff generated by rainfall that exceeds the infiltration capacity of the ground surface, a series of evaluation procedures are presented to evaluate the exposure dose reflecting future changes from the evaluated radioactivity concentration distribution, and a comparison method with the assumed 0.01 mSv/y as a dose criterion is proposed. Furthermore, an example of the procedure for evaluating the distribution of contamination in the subsurface was also presented for the case where groundwater is affected.

Journal Articles

Joint clarification of contaminant plume and hydraulic transmissivity via a geostatistical approach using hydraulic head and contaminant concentration data

Takai, Shizuka; Shimada, Taro; Takeda, Seiji; Koike, Katsuaki*

Mathematical Geosciences, 56(2), p.333 - 360, 2024/02

 Times Cited Count:0 Percentile:0.00(Geosciences, Multidisciplinary)

To enable proper remediation of accidental groundwater contamination, the contaminant plume evolution needs to be accurately estimated. In the estimation, uncertainties in both the contaminant source and hydrogeological structure should be considered, especially the temporal release history and hydraulic transmissivity. Although the release history can be estimated using geostatistical approaches, previous studies use the deterministic hydraulic property field. Geostatistical approaches can also effectively estimate an unknown heterogeneous transmissivity field via the joint data use, such as a combination of hydraulic head and tracer data. However, tracer tests implemented over a contaminated area necessarily disturb the in situ condition of the contamination. Conversely, measurements of the transient concentration data over an area are possible and can preserve the conditions. Accordingly, this study develops a geostatistical method for the joint clarification of contaminant plume and transmissivity distributions using both head and contaminant concentration data. The applicability and effectiveness of the proposed method are demonstrated through two numerical experiments assuming a two-dimensional heterogenous confined aquifer. The use of contaminant concentration data is key to accurate estimation of the transmissivity. The accuracy of the proposed method using both head and concentration data was verified achieving a high linear correlation coefficient of 0.97 between the true and estimated concentrations for both experiments, which was 0.67 or more than the results using only the head data. Furthermore, the uncertainty of the contaminant plume evolution was successfully evaluated by considering the uncertainties of both the initial plume and the transmissivity distributions, based on their conditional realizations.

Journal Articles

Development of risk assessment code for dismantling of radioactive components in decommissioning stage of nuclear reactor facilities

Shimada, Taro; Sasagawa, Tsuyoshi; Miwa, Kazuji; Takai, Shizuka; Takeda, Seiji

Proceedings of International Conference on Environmental Remediation and Radioactive Waste Management (ICEM2023) (Internet), 7 Pages, 2023/10

Nuclear regulatory inspection should be performed on the basis of the risk information during the decommissioning phase of the nuclear power plant. However, it is difficult because the methodology for quantitatively assessing the radiation exposure risk during decommissioning activities has not been established. Therefore, a decommissioning risk assessment code, DecAssess-R, has been developed based on the decommissioning safety assessment code, DecAssess, which creates event trees from initiating events and evaluates the radiation risk resulting from public exposure dose for each accident sequence. The assessment took into account that mobile radioactive inventories that can be easily dispersed in the work area, such as radioactive dust accumulated in HEPA filters attached to a contamination control enclosure, will fluctuate with the progress of the decommissioning work. Initiating events were selected based on the investigation of accidents and malfunctions during dismantling, disassembly, and component replacement activities around the world, and event trees were created from the initiating events to indicate the progress scenario. The frequencies of occurrence were determined with reference to general industry data in addition to the above accidents and malfunctions, and the probabilities of event progression were determined with reference to failure data during the operation phase. The exposure risks during dismantling of components in the reference BWR were evaluated. As a result, the public exposure dose was maximum in case of fire during dismantling of reactor internals and fire spread to combustibles and filters, including radioactivity temporarily stored in the work area. The exposure risk was also maximum because the probability of occurrence of this accident sequence was greater than that of other scenarios.

Journal Articles

Study on borehole sealing corresponding to hydrogeological structures by groundwater flow analysis

Sawaguchi, Takuma; Takai, Shizuka; Sasagawa, Tsuyoshi; Uchikoshi, Emiko*; Shima, Yosuke*; Takeda, Seiji

MRS Advances (Internet), 8(6), p.243 - 249, 2023/06

In the intermediate depth disposal of relatively high-level radioactive waste, a method to confirm whether the borehole for monitoring is properly sealed should be developed in advance. In this study, groundwater flow analyses were performed for the hydrogeological structures with backfilled boreholes, assuming sedimentary rock area, to understand what backfill design conditions could prevent significant water pathways in the borehole, and to identify the confirmation points of borehole sealing. The results indicated the conditions to prevent water pathways in the borehole and BDZ (Borehole Disturbed Zone), such as designing the permeability of bentonite material less than or equal to that of the host rock, and grouting BDZ.

Journal Articles

Laboratory experiment on runoff of particles deposited on land surface by rainfall at accidents in the decommissioning stage

Shimada, Taro; Namekawa, Masakazu*; Miwa, Kazuji; Takeda, Seiji

Proceedings of Waste Management Symposia 2023 (WM2023) (Internet), 8 Pages, 2023/02

It is supposed that radioactive dust deposited at the land surface will be moved downstream and concentrated at the depression by overland flow at heavy rain after the accidental release of radioactive dusts accumulated at the filters in the decommissioning stage of nuclear facilities. The authors are developing a calculation code to evaluate distribution changes of radioactivity on the surface and public dose considering the conditions such as rainfall, topography and types of cover surface. It is necessary to construct methods for setting parameter values used for the calculations based on the actual situation. Therefore, the parameter values were obtained by the experiments where Fe$$_3$$O$$_4$$ powder spread on the cover surface such as smooth and aged-asphalt, concrete and bare soil, was eroded by overland flow and raindrops and they were collected at the lower end of the slope at a minute interval. The collected weights of overland flow and Fe$$_3$$O$$_4$$ powder were measured. Based on the Manning's roughness coefficient for smooth asphalt already known as a fixed value, the erosion velocity coefficient was evaluated. Then Manning's roughness coefficients for other cover surfaces were obtained using the erosion velocity coefficient. Manning's roughness coefficients were slightly smaller than the range of literature values. In addition, elevations for the cover surface were measured by 3D scanner as point cloud data, and the surface roughness were evaluated. The values of surface roughness and Manning's roughness coefficients had a correlation. It indicated a possibility to utilize the surface roughness to set the Manning's roughness coefficient for the evaluation of radioactivity distribution change by heavy rainfall.

Journal Articles

Evaluating the effectiveness of a geostatistical approach with groundwater flow modeling for three-dimensional estimation of a contaminant plume

Takai, Shizuka; Shimada, Taro; Takeda, Seiji; Koike, Katsuaki*

Journal of Contaminant Hydrology, 251, p.104097_1 - 104097_12, 2022/12

 Times Cited Count:3 Percentile:28.43(Environmental Sciences)

When assessing the risk from an underground environment that is contaminated by radioactive nuclides and hazardous chemicals and planning for remediation, the contaminant plume distribution and the associated uncertainty from measured data should be estimated accurately. While the release history of the contaminant plume may be unknown, the extent of the plume caused by a known source and the associated uncertainty can be calculated inversely from the concentration data using a geostatistical method that accounts for the temporal correlation of its release history and groundwater flow modeling. However, the preceding geostatistical approaches have three drawbacks: (1) no applications of the three-dimensional plume estimation in real situations, (2) no constraints for the estimation of the plume distribution, which can yield negative concentration and large uncertainties, and (3) few applications to actual cases with multiple contaminants. To address these problems, the non-negativity constraint using Gibbs sampling was incorporated into the geostatistical method with groundwater flow modeling for contaminant plume estimation. This method was then tested on groundwater contamination in the Gloucester landfill in Ontario, Canada. The method was applied to three water soluble organic contaminants: 1,4-dioxane, tetrahydrofuran, and diethyl ether. The effectiveness of the proposed method was verified by the general agreement of the calculated plume distributions of the three contaminants with concentration data from 66 points in 1982 (linear correlation coefficient of about 0.7). In particular, the reproduced large spill of organic contaminants of 1,4-dioxane in 1978 was more accurate than the result of preceding minimum relative entropy-based studies. The same peak also appeared in the tetrahydrofuran and diethyl ether distributions approximately within the range of the retardation factor derived from the fraction of organic carbon.

Journal Articles

Development of the evaluation method for the mobile radioactive contaminants for assessing public exposure risk in accidental events during decommissioning of nuclear power station

Sasagawa, Tsuyoshi; Shimada, Taro; Takeda, Seiji

Proceedings of 31st International Conference Nuclear Energy for New Europe (NENE2022) (USB Flash Drive), 8 Pages, 2022/12

In the risk assessment of the decommissioning phase, the inventory of radioactivity accumulated in filters and other materials changes with the progress of dismantling work under normal conditions, and a method that can evaluate the public exposure dose during an accident in which these changes are taken into account is required. The inventories (the mobile radioactive contaminants) include filters in which radioactive dust dispersed by equipment cutting work has accumulated and combustible waste generated by decontamination work. In this study, we developed a method to evaluate the accumulation of mobile contaminants in filters by calculating the amount of dust transferred into the air during equipment cutting operations using a model that evaluates the volume of the cutting kerf width and the dispersion ratio. Furthermore, the amount of the mobile contaminants that accumulates in local filters and building filters for each equipment was evaluated using this method, taking into account differences in cutting methods (underwater or in air) and work processes, and the equipment and work processes that should be focused on during regulatory inspections were studied preliminarily. It was suggested that some equipment cut in air generate the same amount of the mobile contaminants compared to reactor internals with high radioactivity that are cut in underwater. This indicates that the mobile contaminant is one of the important indicators in nuclear regulatory inspections that influence the selection of inspection targets.

Journal Articles

Experimental study on the localization and estimation of radioactivity in concrete rubble using image reconstruction algorithms

Takai, Shizuka; Namekawa, Masakazu*; Shimada, Taro; Takeda, Seiji

IEEE Transactions on Nuclear Science, 69(7), p.1789 - 1798, 2022/07

 Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)

To reduce a large amount of contaminated concrete rubble stored in the Fukushima Daiichi Nuclear Power Station site, recycling low-radioactivity rubble within the site is a possible remedy. To promote recycling while ensuring safety, not only the average radioactivity but also the radioactivity distribution of concrete rubble should be efficiently evaluated because the details of rubble contamination caused by the accident remain unclear and likely include hotspots. However, evaluating inhomogeneous contamination of thick and/or dense materials is difficult using previous measurement systems, such as clearance monitors. This study experimentally confirmed the potential applicability of image reconstruction algorithms for radioactivity distribution evaluation in concrete rubble filled in a chamber. Radiation was measured using plastic scintillation fiber around the chamber (50 $$times$$ 50 $$times$$ 40 cm$$^{3}$$). Localized hotspots were simulated using standard sources of $$^{137}$$Cs, which is one of the main nuclides of contaminated rubble. The radioactivity distribution was calculated for 100 or 50 voxels (voxel size: (10 cm)$$^{3}$$ or 10 $$times$$ 10 $$times$$ 20 cm$$^{3}$$) constituting the chamber. For 100 voxels, inner hotspots were undetected, whereas, for 50 voxels, both inner and surface hotspots were reconstructible. The distribution evaluated using the maximum likelihood expectation maximization algorithm was the most accurate; the average radioactivity was estimated within 70% accuracy in all seven cases.

Journal Articles

Evaluation of clearance level for radionuclides in asbestos-containing wastes

Shimada, Taro; Nemoto, Hiromi*; Takeda, Seiji

Hoken Butsuri (Internet), 57(1), p.5 - 29, 2022/03

Of the asbestos-containing wastes arising from the dismantling activities of nuclear facilities, those with radioactive concentrations that do not need to be treated as radioactive substances will be cleared from the nuclear regulatory control. Those will be disposed of or recycled as specially controlled industrial waste based on the Waste Management and Public Cleansing Act. The authors constructed evaluation scenarios according to the treatment manual for asbestos-containing waste and evaluated public exposure doses per year for 33 radionuclides. Based on the evaluated doses, the radioactive concentration corresponding to the dose criteria of 10 $$mu$$Sv/y for clearance was calculated for each radionuclide and scenario. As a result, the evaluated concentration was equal to or higher than the current clearance level. It was confirmed that the application of the current clearance level for asbestos-containing wastes did not affect safety.

Journal Articles

Development of dose evaluation method considering radionuclides migration on the surface of the site for confirmation of completion of decommissioning

Miwa, Kazuji; Namekawa, Masakazu*; Shimada, Taro; Takeda, Seiji

MRS Advances (Internet), 7(7-8), p.165 - 169, 2022/03

We have developed evaluation method of radiocesium (RCs) migration by surface runoff and soil erosion in considering vertical distribution of RCs in initial contaminated soil and concentration of RCs in different particle size. RCs migration on ground surface during single year has been evaluated in virtual site contaminated uniformly by Cs-137. As a result, RCs has concentrated in the impoundment, and 0.18% of total inventory in the site migrated into the sea. These results suggest that surface migration of RCs effects increasing of external exposure at impoundment and internal exposure from ingestion of marine product.

Journal Articles

Activity report of the Task Group on Parameters Used in Biospheric Dose Assessment Models for Radioactive Waste Disposal

Takahashi, Tomoyuki*; Fukaya, Yukiko*; Iimoto, Takeshi*; Uni, Yasuo*; Kato, Tomoko; Sun, S.*; Takeda, Seiji; Nakai, Kunihiro*; Nakabayashi, Ryo*; Uchida, Shigeo*; et al.

Hoken Butsuri (Internet), 56(4), p.288 - 305, 2021/12

We report the results of activities related to the Task Group of Parameters Used in Biospheric Dose Assessment Models for Radioactive Waste Disposal at the Japan Health Physics Society.

Journal Articles

Determination of $$^{135}$$Cs/$$^{137}$$Cs isotopic ratio in soil collected near Fukushima Daiichi Nuclear Power Station through mass spectrometry

Shimada, Asako; Tsukahara, Takehiko*; Nomura, Masao*; Kim, M. S.*; Shimada, Taro; Takeda, Seiji; Yamaguchi, Tetsuji

Journal of Nuclear Science and Technology, 58(11), p.1184 - 1194, 2021/11

 Times Cited Count:6 Percentile:60.59(Nuclear Science & Technology)

Determining the completeness of nuclear reactor decommissioning is an important step in safely utilizing nuclear power. For example, $$^{137}$$Cs from the Fukushima Daiichi Nuclear Power Station (FDNPS) accident can be treated as background radioactivity, so determining the origin of $$^{137}$$Cs is essential. To accomplish this, measuring the $$^{135}$$Cs/$$^{137}$$Cs isotope ratio can be useful, so this study optimized a solvent extraction method, with calix[4]arene-bis(t-octylbenzo-crown-6) [BOBCalixC6] in 1-octanol, to purify radioactive Cs, radiocesium, from a solution of major environmental soil elements and mass spectrometry interference elements. This optimized method was applied to Cs purification in soil samples (40 g), and the final solutions contained a total of 10$$mu$$g/ml of the major soil elements and ng/ml concentrations at most of interfering elements. Soil samples collected near the FDNPS were then purified, and the $$^{135}$$Cs/$$^{137}$$Cs isotope ratios were measured, using both thermal ionization mass spectrometry (TIMS) and triple quadrupole induced coupled plasma mass spectrometry (ICP-QQQ). The results of each of these measurements were compared, and we found that Cs isotope ratios obtained by TIMS were more precise, by an order of magnitude, while the ICP-QQQ results possessed good abundance sensitivities. A slightly higher $$^{135}$$Cs/$$^{137}$$Cs ratio in the northwest area of the FDNPS was observed, while other areas exhibited similar values, all within the measurement error range, which indicated different origins of radiocesium. These results agreed with previously reported $$^{134}$$Cs/$$^{137}$$Cs activity distributions, suggesting that this ratio may be useful in identifying radiocesium origins for evaluating future nuclear reactor decommissions.

Journal Articles

Estimation of contaminated materials concentration by a geostatistical method with groundwater flow

Takai, Shizuka; Shimada, Taro; Takeda, Seiji; Koike, Katsuaki*

Joho Chishitsu, 32(3), P. 95, 2021/09

We received best presentation award GEOINROUM-2021 for the presentation on "Estimation of contaminated materials concentration by a geostatistical method with groundwater flow". We submit the comments of impression for getting the Award to Geoinformatics.

Journal Articles

Dose estimation of landfill disposal of removed soil generated outside Fukushima Prefecture

Shimada, Asako; Sawaguchi, Takuma; Takeda, Seiji

Health Physics, 120(5), p.517 - 524, 2021/05

 Times Cited Count:0 Percentile:0.00(Environmental Sciences)

Journal Articles

Discussion; Making databases of parameter values of radionuclide transfer in environment and application for biospheric dose assessment

Takahashi, Tomoyuki*; Uchida, Shigeo*; Takeda, Seiji; Nakai, Kunihiro*

KURNS-EKR-11, p.97 - 102, 2021/03

This paper outlines the status of IAEA database compilation for migration parameters depending elements in a biosphere such as soil-to-plant transfer factor and bioconcentration factor of marine products, and the status of utilization of the database in dose evaluation of radioactive waste disposal in Japan. Additionally, in the case of applying a new database to the dose evaluation for future radioactive waste disposal in a specific area. We summarized the opinions of specialists and result of general discussion about future strategies to make a new database for their parameters, perspectives to be considered in it, issues, etc.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

JAEA Reports

Development of MIG2DF Version 2

Takai, Shizuka; Kimura, Hideo*; Uchikoshi, Emiko*; Munakata, Masahiro; Takeda, Seiji

JAEA-Data/Code 2020-007, 174 Pages, 2020/09

JAEA-Data-Code-2020-007.pdf:4.23MB

The MIG2DF computer code is a computer program that simulates groundwater flow and radionuclide transport in porous media for the safety assessment of radioactive waste disposal. The original version of MIG2DF was released in 1992. The original code employs a two-dimensional (vertical or horizontal cross-section, or an axisymmetric configuration) finite-element method to approximate the governing equations for density-dependent saturated-unsaturated groundwater flow and radionuclide transport. Meanwhile, for geological disposal of radioactive wastes, landscape evolution such as uplift and erosion needs to be assessed as a long-term geological and climate events, considering site conditions. In coastal areas, the impact to groundwater flow by change of salinity distribution to sea level change also needs to be considered. To deal with these events in the assessment, we have revised the original version of MIG2DF and developed the external program which enables MIG2DF to consider unsteady landscape evolution. In these developments, this report describes an upgrade of MIG2DF (Version 2) and presents the configuration, equations, methods, and verification. This reports also give the explanation external programs of MIG2DF: PASS-TRAC (the particle tracking code), PASS-PRE (the code for dataset preparation), and PASS-POST (the post-processing visualization system).

Journal Articles

Sensitivity analysis of external exposure dose for future burial measures of decontamination soil generated outside Fukushima prefecture

Shimada, Asako; Sawaguchi, Takuma; Takeda, Seiji

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 5 Pages, 2020/08

no abstracts in English

211 (Records 1-20 displayed on this page)