Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

An Investigation on debris bed self-leveling behavior with non-spherical particles

Cheng, S.; Tagami, Hirotaka; Yamano, Hidemasa; Suzuki, Toru; Tobita, Yoshiharu; Takeda, Shohei*; Nishi, Shimpei*; Nishikido, Tatsuya*; Zhang, B.*; Matsumoto, Tatsuya*; et al.

Journal of Nuclear Science and Technology, 51(9), p.1096 - 1106, 2014/09

AA2013-0303.pdf:1.68MB

 Times Cited Count:25 Percentile:87.99(Nuclear Science & Technology)

Journal Articles

Experimental study and empirical model development for self-leveling behavior of debris bed using gas-injection

Cheng, S.; Tagami, Hirotaka; Yamano, Hidemasa; Suzuki, Toru; Tobita, Yoshiharu; Nakamura, Yuya*; Takeda, Shohei*; Nishi, Shimpei*; Zhang, B.*; Matsumoto, Tatsuya*; et al.

Mechanical Engineering Journal (Internet), 1(4), p.TEP0022_1 - TEP0022_16, 2014/08

Journal Articles

Recent knowledge from an experimental investigation on self-leveling behavior of debris bed

Cheng, S.; Yamano, Hidemasa; Suzuki, Toru; Tobita, Yoshiharu; Nakamura, Yuya*; Takeda, Shohei*; Nishi, Shimpei*; Zhang, B.*; Matsumoto, Tatsuya*; Morita, Koji*

Proceedings of 21st International Conference on Nuclear Engineering (ICONE-21) (DVD-ROM), 8 Pages, 2013/07

JAEA Reports

Rise-to-power test in High Temperature Engineering Test Reactor; Test progress and summary of test results up to 30MW of reactor thermal power

Nakagawa, Shigeaki; Fujimoto, Nozomu; Shimakawa, Satoshi; Nojiri, Naoki; Takeda, Takeshi; Saikusa, Akio; Ueta, Shohei; Kojima, Takao; Takada, Eiji*; Saito, Kenji; et al.

JAERI-Tech 2002-069, 87 Pages, 2002/08

JAERI-Tech-2002-069.pdf:10.12MB

Rise-to-power test in the HTTR has been performed from April 23rd to June 6th in 2000 as phase 1 test up to 10MW, from January 29th to March 1st in 2001 as phase 2 test up to 20MW in the rated operation mode and from April 14th to June 8th in 2001 as phase 3 test up to 20MW in the high temperature test operation mode. Phase 4 test to achieve the thermal reactor power of 30MW started from October 23rd in 2001. On December 7th it was confirmed that the thermal reactor power reached to 30MW and the reactor outlet coolant temperature reached to 850$$^{circ}$$C. JAERI obtained the certificate of pre-operation test from MEXT because all the pre-operation tests by MEXT were passed successfully. From the test results of rise-up-power test up to 30MW, the performance of reactor and cooling system were confirmed, and it was confirmed that an operation of reactor facility could be performed safely. Some problems to be solved were found through tests. By means of solving them, the reactor operation with the reactor outlet coolant temperature of 950$$^{circ}$$C will be achievable.

Oral presentation

Study on characteristics of particle-bed self-leveling driven by gas injection

Nakamura, Yuya*; Gondai, Yoji*; Cheng, S.*; Takeda, Shohei*; Zhang, B.*; Matsumoto, Tatsuya*; Morita, Koji*; Yamano, Hidemasa; Tagami, Hirotaka; Suzuki, Toru; et al.

no journal, , 

In order to clarify the characteristics of debris bed behavior in the post accident heat removal phase in the core disruptive accidents of FBR, an experimental study to simulate the coolant boiling in debris bed by gas injection from the bottom of the bed and basic knowledge on the self-leveling characteristic for large vapor velocity was obtained.

Oral presentation

Extraction behavior of Mo and W from H$$_{2}$$SO$$_{4}$$ with Aliquat336 as homologues of seaborgium (Sg)

Mitsukai, Akina; Toyoshima, Atsushi; Asai, Masato; Tsukada, Kazuaki; Sato, Tetsuya; Kaneya, Yusuke; Takeda, Shinsaku*; Nagame, Yuichiro; Komori, Yukiko*; Murakami, Masashi*; et al.

no journal, , 

We have started studying sulphate-complex formation of a transactinide element, seaborgium (Sg). In this study, we report on the extraction behavior of carrier-free radioisotopes $$^{93m}$$Mo and $$^{181}$$W which are lighter homologs of Sg, from aqueous H$$_{2}$$SO$$_{4}$$ solution with amine extractant, Aliquat336, dissolved in toluene by a batch method. These radioisotopes were produced in the $$^{nat}$$Zr($$alpha$$,${it 2}$)$$^{93m}$$Mo and $$^{181}$$Ta(${it d}$,x${it n}$)$$^{181}$$W reactions at the RIKEN K70 AVF cyclotron. Results of the extraction experiments showed that the distribution ratios of Mo and W increase sharply above ~3.0 M H$$_{2}$$SO$$_{4}$$. Based on the slope analysis, it was indicated that anionic sulphate-complex of [MO$$_{2}$$(SO$$_{4}$$)$$_{2}$$]$$^{2-}$$ (M = Mo, W) are formed in $$>$$ 5 M H$$_{2}$$SO$$_{4}$$. These results suggest that the present system is applicable to the extraction of Sg.

7 (Records 1-7 displayed on this page)
  • 1