検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 3 件中 1件目~3件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Progress on the heating and current drive systems for ITER

Jacquinot, J.*; Albajar, F.*; Beaumont, B.*; Becoulet, A.*; Bonicelli, T.*; Bora, D.*; Campbell, D.*; Chakraborty, A.*; Darbos, C.*; Decamps, H.*; et al.

Fusion Engineering and Design, 84(2-6), p.125 - 130, 2009/06

 被引用回数:24 パーセンタイル:85.38(Nuclear Science & Technology)

ITER用電子サイクロトロン波(EC),イオンサイクロトロン波(IC),中性ビーム(NB)、そして低域混成波(LH)について、その物理と工学の両面の進展を2007/2008年にレビューした。全体仕様の変更はないものの、以下のような設計変更があった。第一に、DTフェーズの前に全パワーである73MW入射をルーティンに入射可能となるように調整すべきこと。第二に、NBを水素フェーズにもフルパワー入射が可能となるように対向壁を用意する、IC用によりロバスト名アンテナ2式を用意する、またECには2MW容量の伝送系を用意して、増力を容易にする。さらにRF源と計測及び加熱用ポートプラグの試験施設となる付属建屋を用意する。第三に、LHのようにITERの長パルス運転時に適した電流駆動システムを開発するための計画の必要性が認識された。

論文

Status of the ITER heating neutral beam system

Hemsworth, R. S.*; Decamps, H.*; Graceffa, J.*; Schunke, B.*; 田中 政信*; Dremel, M.*; Tanga, A.*; DeEsch, H. P. L.*; Geli, F.*; Milnes, J.*; et al.

Nuclear Fusion, 49(4), p.045006_1 - 045006_15, 2009/04

 被引用回数:344 パーセンタイル:99.77(Physics, Fluids & Plasmas)

ITER中性粒子ビーム入射(NB)装置は、過酷な放射線環境中で運転され、かつITERからの中性子によって放射化する、核融合炉と同様の条件と制約のもとで稼動する最初のNB装置となる。ITER NB装置は単一の大型イオン源と加速器を用いて、1MeV, 40AのD$$^{-}$$イオンを3600秒間にわたり加速する。最近4年間で以下の設計変更がなされた。(1)天井クレーンによってビームライン機器の保守と交換を可能とした。(2)フィラメントを用いたイオン源に代えてRF駆動イオン源を参照設計に採用した。(3)イオン生成電源と引出し電源を、従来NB装置の上階に設置したSF6ガス絶縁HVデッキから、トカマク建屋外の大気絶縁HVデッキに移した。本論文は以上の設計変更を含む2008年12月時点での設計の現状を報告する。

口頭

Physics assessment of the NBI capability in ITER plasmas

及川 聡洋; Polevoi, A. R.*; Mukhovatov, V.*; 坂本 宜照; 鎌田 裕; 嶋田 道也*; Campbell, D. J.*; Chuyanov, V.*; Schunke, B.*; Tanga, A.*; et al.

no journal, , 

現在行われているITERの設計評価では、MHD不安定性抑制に必要なプラズマ回転を増やすためにNBIのエネルギーを下げる提案がされている。そこでさまざまな設計の可能性に対してNB入射によるプラズマ性能を評価した。外部加熱電力によってHモードを得られる運転領域を評価したところ、重水素-三重水素運転ではHモード遷移境界を十分に超え良い閉じ込めが得られる領域に到達できる。軽水素運転ではNBIの突抜のためエネルギーを500keV以下にする必要がある。しかしながらビームエネルギーを500keVまで下げるとITERのミッション達成に必要な$$10^{20}/m^3$$程度の高密度で中心加熱ができないことから、DT運転ではより高いビームエネルギーが必要である。ビームエネルギーを750keVにすると回転は13%増えるが電流駆動は20%効率が落ち、定常運転シナリオを描くことが困難になる。したがってDT運転では1MeVのNBが必要である。ITERでは放電中にビームエネルギーの変化を通してNB入射パワーを変化させることができ、NBIを使ってプラズマ圧力をMHD安定性限界を超えないように実時間制御することが可能である。

3 件中 1件目~3件目を表示
  • 1