Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 35

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High performance computing for analyzing PB-scale data in nuclear experiments and simulations

Tatekawa, Takayuki; Teshima, Naoya*; Kushida, Noriyuki; Miyamura, Hiroko; Kim, G.; Takemiya, Hiroshi

High Performance Computing on Vector Systems 2011, p.107 - 117, 2012/01

no abstracts in English

Journal Articles

Fault-tolerant mechanism of both job execution and file transfer for integrated nuclear energy simulation

Tatekawa, Takayuki; Teshima, Naoya*; Suzuki, Yoshio; Takemiya, Hiroshi

Progress in Nuclear Science and Technology (Internet), 2, p.591 - 597, 2011/10

By integrating simulation codes which simulate physical process or part of nuclear energy facility, large-scale and detailed simulation can be carried out. Such integrated simulations require several weeks or months of CPU times. Avoiding unscheduled outage of computers or network, we have developed fault-tolerant mechanism for cooperative execution of the codes. The mechanism covers abnormal end of jobs on supercomputers and error of file transfers. When the computer causes unexpected outage, the mechanism tries to submit job of simulation to alternative computer. Furthermore, by comparison the size of the files between before and after transfer, the mechanism detects error of the transfer. In the fault-tolerant mechanism, because the relations between the jobs and the file transfers are connected, we can decide an execution order of the codes by the definition of file flow. Therefore we can operate integrated simulations in which the codes are executed sequentially or concurrently.

Journal Articles

Full-scale 3D vibration simulator for an entire nuclear power plant on the simple orchestration application framework

Kim, G.; Nakajima, Kohei*; Teshima, Naoya*; Tatekawa, Takayuki; Suzuki, Yoshio; Takemiya, Hiroshi

Progress in Nuclear Science and Technology (Internet), 2, p.634 - 638, 2011/10

We developed grid-enabled application of full-scale 3D vibration simulator for an entire nuclear power plant on simple orchestration application framework (SOAF). The simulator is an analysis system to study seismic response of a whole digitalized nuclear power plant. In the simulator, components of a power plant are treated in hierarchical manner so that large components are grouped at primary level and small components such as pipes at secondary level. Boundary condition data are transferred from the primary level to the secondary level. SOAF provides functionality to enable users to simply define the data transfer in pipelined scenario which is technically difficult to realize using the existing grid technology. In this paper, we discuss technical issues of the realization of pipelined scenario on grid and demonstrate effectiveness of SOAF by analysis of High Temperature Engineering Test Reactor of JAEA using grid-enabled application implementing SOAF.

Journal Articles

Visualization system for large-scale network data; A Large scale data capture technique

Miyamura, Hiroko; Ozahata, Satoshi*; Nakao, Akihiro*; Kawashima, Konosuke*; Teshima, Naoya*; Suzuki, Yoshio; Takemiya, Hiroshi

Zen NUA C&C Shisutemu Yuzakai Heisei-22-Nendo Rombunshu (CD-ROM), 14 Pages, 2011/02

Recently, construction of large-scale distributed file systems has become easier because of reduced hardware costs and the availability of large hard disks and faster networks. However, if the sizes and/or numbers become too large, occasionally even the data server manager cannot control the storage situation of the files. Therefore, we propose the concept of adaptive network graph display, in which the graph style can be changed according to the details of what the user details is observing, and construct a visualization system based on this concept. When observing data globally, the proposed system selectively displays information based on the clustering result, and when observing data locally, the system displays detailed information. This technique is a basic technology for computational science to achieve large-scale datasets handling and knowledge succession which is a problem in atomic energy related fields.

Journal Articles

Fault-tolerant mechanism of both job execution and file transfer for integrated nuclear energy simulation

Tatekawa, Takayuki; Teshima, Naoya; Suzuki, Yoshio; Takemiya, Hiroshi

Proceedings of Joint International Conference of 7th Supercomputing in Nuclear Application and 3rd Monte Carlo (SNA + MC 2010) (USB Flash Drive), 6 Pages, 2010/10

In the nuclear field, various large-scale integrated simulations which cannot be executed with single job have been developed to reveal physical and engineering phenomena. Such integrated simulations are accomplished by coupling several simulation codes, each of which is charge of each physical process or each engineering part of whole system. Fault-tolerant (FT) mechanism is very important to run such simulations on the error-prone environment such as Grid. We developed functions of error detection, job re-submission, and file re-transfer and integrated them as a FT mechanism. Our test run of integrated nuclear energy application showed that the FT mechanism sustained the long run of the application by recovering the job failure automatically.

Journal Articles

Full-scale 3D vibration simulator for an entire nuclear power plant on the simple orchestration application framework

Kim, G.; Nakajima, Kohei*; Teshima, Naoya; Tatekawa, Takayuki; Suzuki, Yoshio; Takemiya, Hiroshi

Proceedings of Joint International Conference of 7th Supercomputing in Nuclear Application and 3rd Monte Carlo (SNA + MC 2010) (USB Flash Drive), 5 Pages, 2010/10

Full-Scale 3D vibration simulator for an entire nuclear power plant is a seismic response analysis system for a whole digitalized nuclear power plant. In the system, boundary data from large components are used as input data of small components. To make a whole simulation efficient, we introduced pipeline method in which the data were transferred each time step running all components simulations in parallel. In the realization of the method on grid, since there were no existing grid technologies to sufficiently support the method for a long time, we developed simple orchestration application framework (SOAF) and using the SOAF, we performed seismic response analysis of a test reactor of JAEA and succeeded simulation for a week.

Journal Articles

Development of an international matrix-solver prediction system on a French-Japanese international grid computing environment

Suzuki, Yoshio; Kushida, Noriyuki; Tatekawa, Takayuki; Teshima, Naoya; Caniou, Y.*; Guivarch, R.*; Dayde, M.*; Ramet, P.*

Proceedings of Joint International Conference of 7th Supercomputing in Nuclear Application and 3rd Monte Carlo (SNA + MC 2010) (USB Flash Drive), 6 Pages, 2010/10

The "Research and Development of International Matrix-Solver Prediction System (REDIMPS)" project, which is founded by the Strategic Japanese-French Cooperative Program on "Information and Communications Technology including Computer Science" with CNRS and JST, aims at improving the "Test for Large System of Equations (TLSE)" sparse linear algebra expert system by establishing an international grid computing environment between Japan and France. Here, we have established the interoperable environment between French and Japanese grid middleware (DIET and AEGIS), and have confirmed that TLSE can rely on this French and Japanese interoperable environment for researchers to select a matrix-solver suitable to their each application program. By this study, we proposed to the French and Japanese researchers the environment in which they can obtain useful information for the improvement of their application program.

Journal Articles

Application integration control system for multi-scale and multi-physics simulation

Kino, Chiaki; Tatekawa, Takayuki; Teshima, Naoya; Kim, G.; Suzuki, Yoshio; Araya, Fumimasa; Nishida, Akemi; Takemiya, Hiroshi

Proceedings of Joint International Conference of 7th Supercomputing in Nuclear Application and 3rd Monte Carlo (SNA + MC 2010) (USB Flash Drive), 4 Pages, 2010/10

In the present study, we have developed a new control system for application integration with the fault-tolerant API (FT-API). The system treats an application as a task which consists of one job and multiple file transfer. Firstly, each task designates a computer to submit a job using a scheduler associated to the job. Secondly, all files which are necessary to execute the job are gathered in the computer using FT-API for file transfer. Finally, the job is submitted using FT-API for job execution. If the computer is outage, the task designates a new computer, gathers necessary files and submits a new job. Each scheduler, file transfer and job condition can be flexibly defined in XML. This time, we applied the system to fluid-structure interaction analysis simulation. The result indicates that the system enables a user to easily execute multi-scale and multi-physics simulation using application integration.

Journal Articles

Development of simple orchestration application framework and its application to burning plasma simulation

Tatekawa, Takayuki; Nakajima, Kohei*; Kim, G.; Teshima, Naoya; Suzuki, Yoshio; Takemiya, Hiroshi

High Performance Computing on Vector Systems 2010, p.107 - 120, 2010/09

In the atomic field, by integrating various simulation codes which were installed on distributed computers, large-scale and detailed simulations which aim explication of complicated phenomena. However integration of each simulation codes and cooperative operation of the integrated codes make heavy burden for researchers. We have developed the Simple Orchestration Application Framework (SOAF) to cooperatively control simulation codes on remote computers from a client PC. SOAF enables researchers to cooperatively execute various codes on grid infrastructure by only describing a configuration file including the information of execution codes and file flows among them. SOAF does not need substantial modification of the simulation codes. By using SOAF, we successfully execute four plasma simulation codes included in the "Burning Plasma Integrated Code" according to the scenario described in the configuration file.

Journal Articles

R&D of atomic energy grid infrastructure AEGIS

Suzuki, Yoshio; Tatekawa, Takayuki; Kim, G.; Kino, Chiaki; Miyamura, Hiroko; Teshima, Naoya; Hayashi, Sachiko*; Aoyagi, Tetsuo; Takemiya, Hiroshi; Nakajima, Norihiro

Keisan Kogaku Koenkai Rombunshu, 15(2), p.1051 - 1054, 2010/05

We have developed the Atomic Energy Grid InfraStructure (AEGIS) for establishing computational infrastructure for nuclear field. In this R&D we have inherited the knowledge and skills in ITBL Infrastructure developed in the national project ITBL (Information Technology Based Laboratory), which aims at establishment of virtual research environment where supercomputers and data bases are connected by network. Here we have focused on two issues: improvements of safety and usability. For the safety, we have made the authentication mechanism double with both the personal certification and the machine certification. For the usability, we have developed the grid-enabled client API to use grid functions on a user terminal. By those R&Ds, we have successfully contributed to various nuclear researches, such as "full scale 3D vibration simulator for an entire nuclear power plant", "simulation for predicting quake-proof capability of nuclear power plants", and so on.

Journal Articles

Simple orchestration application framework to control "Burning Plasma Integrated Code"

Tatekawa, Takayuki; Nakajima, Kohei*; Teshima, Naoya; Kim, G.; Suzuki, Yoshio; Takemiya, Hiroshi; Hayashi, Nobuhiko; Iba, Katsuyuki*

Proceedings of 3rd International Joint Conference on Computational Sciences and Optimization (CSO 2010), p.322 - 326, 2010/05

Journal Articles

Simple orchestration application framework to control integrated simulations on grid

Tatekawa, Takayuki; Nakajima, Kohei*; Kim, G.; Kino, Chiaki; Teshima, Naoya; Suzuki, Yoshio; Takemiya, Hiroshi

FUJITSU Famirikai Rombunshu (Internet), 19 Pages, 2010/03

We have introduced about the framework to make the integration of large and complicated simulation such as a proof strength simulation of nuclear power plants and a control simulation of nuclear fusion plasma which codes are installed to distributed computers. We able to carry out detailed simulations by integrating various simulation methods with development of simulation technique. However it becomes a burden to control the integration of each simulation code for researchers. We have noticed that the execution scenarios of each code in cooperated simulation are roughly categorized to workflow type, pipeline type, and conditional branch type. Then we have developed the framework in which just write those patterns in a configuration file and achieve the cooperative execution of element codes without substantial modification of simulation codes.

Journal Articles

Network computing infrastructure to share tools and data in global nuclear energy partnership

Kim, G.; Suzuki, Yoshio; Teshima, Naoya

Journal of Power and Energy Systems (Internet), 4(1), p.180 - 190, 2010/03

Journal Articles

Network computing infrastructure to share tools and data in GNEP

Kim, G.; Suzuki, Yoshio; Teshima, Naoya

Proceedings of 17th International Conference on Nuclear Engineering (ICONE-17) (CD-ROM), 8 Pages, 2009/07

JAEA Reports

Activity report for feasibility study on PKI authentication method with IC card in Authentication System Sub Group of J-PARC Information System Group

Teshima, Naoya; Aoyagi, Tetsuo; Hashimoto, Kiyoharu*; Manabe, Atsushi*; Yuasa, Fukuko*; Nakajima, Norihiro

JAEA-Data/Code 2009-004, 24 Pages, 2009/06

JAEA-Data-Code-2009-004.pdf:1.65MB

The authentication System Group of J-PARC Information System Group carried out the feasibility study about PKI authentication method that used IC card. Its purpose was that we validated its practical utility to choose an authentication method to adjust a security level desired at the information system of J-PARC. As a target of the feasibility studies, we chose following four validation items. (1) "The EAP-TLS wireless LAN authentication method" (2) "The Web-SSL client authentication method when accessed via SSL-VPN device" (3) "The PKI authentication method that used IC card stored the certificate which issued by NAREGI-CA software. (4) "The PKI authentication method that used Dual card type FeliCa". We established validation point for each validation item, and carried out it. So, we got the results and useful information. This report is that we organized a validation procedure, result and knowledge that we got by feasibility studies.

Journal Articles

A Script generator API for the full-scale three-dimensional vibration simulation of an entire nuclear power plant within AEGIS

Kim, G.; Suzuki, Yoshio; Teshima, Naoya; Nishida, Akemi; Yamada, Tomonori; Araya, Fumimasa; Takemiya, Hiroshi; Nakajima, Norihiro; Kondo, Makoto

Proceedings of 1st International Conference on Parallel, Distributed and Grid Computing for Engineering (PARENG 2009) (CD-ROM), 12 Pages, 2009/04

Journal Articles

Gridization of IMAGINE, dose calculation system, for the remote assistance of radiation therapy

Saito, Kimiaki; Teshima, Naoya; Suzuki, Yoshio; Nakajima, Norihiro; Saito, Hidetoshi*; Kunieda, Etsuo*; Fujisaki, Tatsuya*

FUJITSU Famirikai Rombunshu (Internet), 20 Pages, 2009/02

We research and develop IMAGINE as the dose calculation system, which can calculate the dose distribution in the patient body very fast and with high precision by a super parallel calculation, for the contribution to QoS of the radiation therapy and the development of the eading-edge treatment technology. When IMAGINE system will be actually operated, it is anticipated that IMAGINE system accepts the large amount of requests of the dose calculation from several radiotherapy facilities at the same time. So, we entertained that the dose calculation was distributed by the gridization of IMAGINE system and the waiting time of its was minimized. In this article, we introduce the problem about the gridization of IMAGINE system, the solution to it and the method to easily enable the gridization of the application without the programming skill.

Journal Articles

Grid use not to consider grid; Proposal of seamless API and adaptation to applications

Nakajima, Kohei; Suzuki, Yoshio; Teshima, Naoya; Sugimoto, Shinichiro*; Yoshimura, Shinobu*; Nakajima, Norihiro

Zen NEC C&C Shisutemu Yuza Kai Heisei-20-Nendo Rombunshu (CD-ROM), 13 Pages, 2009/02

Grid computing environment is equipped with a lot of tools to manage jobs and computers. Thereby, user can use the computers without directly access. However, user has to acquire usage of these tools even when user does an easy job because all usages of these tools are peculiar to the grid base. A lot of users think that the grid is difficult even though these tools exist. Then, we developed script generator API to make the job script. These settings were made easy by this API in the user application. In this paper, the outline of this API and the adjustment to the application are described.

Journal Articles

Interoperation between Atomic Energy Grid Infrastructure (AEGIS) and other grids

Suzuki, Yoshio; Kushida, Noriyuki; Teshima, Naoya; Nakajima, Kohei; Nishida, Akemi; Nakajima, Norihiro

High Performance Computing on Vector Systems 2008, p.65 - 77, 2009/00

Center for computational science and e-systems, Japan Atomic Energy Agency (CCSE/JAEA) has been carrying out R&Ds of grid computing technology since FY1995 aiming at establishing an infrastructure for the computational science research. One of them is R&D of IT-Based Laboratory (ITBL) infrastructure. The ITBL project is a national project placed as one of the e-Japan Priority Policy Program to realize the e-Japan Strategy. By succeeding the technology of ITBL infrastructure, CCSE is carrying out R&D of Atomic Energy Grid Infrastructure (AEGIS) to construct an intelligent infrastructure for the atomic energy research. CCSE has been carrying out international cooperation researches in various fields to advance computer science and to expand AEGIS grid computing environment. To achieve this, we have developed the system to construct interoperable environments between AEGIS and other grid middleware.

Journal Articles

Development of three-dimensional virtual plant vibration simulator on grid computing environment ITBL-IS/AEGIS

Suzuki, Yoshio; Nishida, Akemi; Araya, Fumimasa; Kushida, Noriyuki; Akutsu, Taku; Teshima, Naoya; Nakajima, Kohei; Kondo, Makoto; Hayashi, Sachiko; Aoyagi, Tetsuo; et al.

Journal of Power and Energy Systems (Internet), 3(1), p.60 - 71, 2009/00

Center for computational science and e-systems of Japan Atomic Energy Agency is carrying out R&D in the area of extra large-scale simulation technologies for solving nuclear plant structures in its entirety. Specifically, we focus on establishing a virtual plant vibration simulator on inter-connected supercomputers intended for seismic response analysis of a whole nuclear plant. The simulation of a whole plant is a very difficult task because an extremely large dataset must be processed. To overcome this difficulty, we have proposed and implemented a necessary simulation framework and computing platform. The computing platform enables an extra large-scale whole nuclear plant simulation to be carried out on a grid computing platform ITBL-IS and AEGIS. The simulation framework based on the computing platform has been applied to a linear elastic analysis of the reactor pressure vessel and cooling systems of the nuclear research facility, HTTR.

35 (Records 1-20 displayed on this page)