Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamauchi, Hiroki; Metoki, Naoto; Watanuki, Ryuta*; Hong, T.*; Fernandez-Baca, J. A.*; Hagihara, Masato; Masuda, Takatsugu*; Yoshizawa, Hideki*; Ito, Shinichi*
Journal of the Physical Society of Japan, 94(5), p.054705_1 - 054705_8, 2025/04
Taniguchi, Takumi; Matsumoto, Saori; Hiraki, Yoshihisa; Sato, Junya; Fujita, Hideki*; Kaneda, Yoshihisa*; Kuroki, Ryoichiro; Osugi, Takeshi
JAEA-Review 2024-059, 20 Pages, 2025/03
The basic performance required for solidifying waste into cement, such as fluidity before curing and strength after curing, is expected to be affected by the chemical effects of substances and components contained in the waste. The fluidity before curing and the strength properties after curing are greatly influenced by the curing speed of the cement. We investigated existing knowledge with a focus on chemical substances that affect the curing speed of cement. In this report, chemical substances that affect fluidity are broadly classified into inorganic substances such as (1) anion species, (2) metal elements such as heavy metals, (3) inorganic compounds as cement admixtures, and (4) organic compounds as cement admixtures. Based on the investigation, we actually added chemicals and measured the setting time. As a result, it was found that there are multiple mechanisms contributing to accelerated hardening. We investigated chemical substances that inhibit the curing reaction of cement, and were able to compile information to consider ingredients that are contraindicated in cement curing.
Kokubun, Yuji; Hosomi, Kenji; Seya, Natsumi; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Hasegawa, Ryo; Kubota, Tomohiro; Hirao, Moe; Iizawa, Shogo; et al.
JAEA-Review 2024-053, 116 Pages, 2025/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution prevention act, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2023. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Kawasaki, Takuro; Fukuda, Tatsuo; Yamanaka, Satoru*; Murayama, Ichiro*; Kato, Takanori*; Baba, Masaaki*; Hashimoto, Hideki*; Harjo, S.; Aizawa, Kazuya; Tanaka, Hirohisa*; et al.
Journal of Applied Physics, 137(9), p.094101_1 - 094101_7, 2025/03
Times Cited Count:0 Percentile:0.00(Physics, Applied)Teshigawara, Makoto; Lee, Y.*; Tatsumoto, Hideki*; Hartl, M.*; Aso, Tomokazu; Iverson, E. B.*; Ariyoshi, Gen; Ikeda, Yujiro*; Hasegawa, Takumi*
Nuclear Instruments and Methods in Physics Research B, 557, p.165534_1 - 165534_10, 2024/12
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)At Japanese Spallation Neutron Source in J-PARC, the para-hydrogen fraction was measured by using Raman spectroscopy in-situ for an integrated beam power of 9.4 MWh at 1 MW operation, to evaluate the functionality of the ferric oxyhydroxide catalyst. This result showed that full functionality of the catalyst was retained up to the 1 MW operation. We attempted to study the effect of neutron scattering driven para to ortho-hydrogen back-conversion rate in the absence of the catalyst effect with a bypass line without catalyst. The measured increase of ortho-hydrogen fraction was 0.44% for an integrated beam power of 2.4 MW
h at 500 kW operation, however, which was considered to be due to not only to neutron collisions in cold moderators but also to the high ortho-hydrogen fraction of initially static liquid hydrogen in the bypass line and passive exudation of quasi-static hydrogen in the catalyst vessel to the main loop.
Kotegawa, Hisashi*; Nakamura, Akira*; Huyen, V. T. N.*; Arai, Yuki*; To, Hideki*; Sugawara, Hitoshi*; Hayashi, Junichi*; Takeda, Keiki*; Tabata, Chihiro; Kaneko, Koji; et al.
Physical Review B, 110(21), p.214417_1 - 214417_8, 2024/12
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Yamamoto, Katsuhiro*; Imai, Tatsuya*; Kawai, Atsuki*; Ito, Eri*; Miyazaki, Tsukasa*; Miyata, Noboru*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki
ACS Applied Materials & Interfaces, 16(48), p.66782 - 66791, 2024/11
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)Miyazaki, Tsukasa*; Miyata, Noboru*; Arima-Osonoi, Hiroshi*; Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Takenaka, Mikihito*; Nakanishi, Yohei*; Shibata, Motoki*; Aoki, Hiroyuki; Yamada, Norifumi*; et al.
Colloids and Surfaces A; Physicochemical and Engineering Aspects, 701, p.134928_1 - 134928_8, 2024/11
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Kaburagi, Masaaki; Kamada, Kei*; Ishii, Junya*; Matsumoto, Tetsuro*; Manabe, Seiya*; Masuda, Akihiko*; Harano, Hideki*; Kato, Masahiro*; Shimazoe, Kenji*
Journal of Instrumentation (Internet), 19(11), p.P11019_1 - P11019_16, 2024/11
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Wakabayashi, Yuki*; Krockenberger, Y.*; Yamagami, Kohei*; Wadachi, Hiroki*; Shibata, Goro; Fujimori, Atsushi*; Kawamura, Naomi*; Suzuki, Motohiro*; Taniyasu, Yoshitaka*; Yamamoto, Hideki*
SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 12(5), p.291 - 293, 2024/10
no abstracts in English
Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Shibata, Motoki*; Nakanishi, Yohei*; Arakawa, Masato*; Takenaka, Mikihito*; Kida, Takumitsu*; Tokumitsu, Katsuhisa*; Tanaka, Ryo*; et al.
Langmuir, 40(30), p.15758 - 15766, 2024/07
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Nagaoka, Mika; Koike, Yuko; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; et al.
JAEA-Review 2023-052, 118 Pages, 2024/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2022. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Tsuji, Hayato*; Nakahata, Masaki*; Hishida, Mafumi*; Seto, Hideki*; Motokawa, Ryuhei; Inoue, Takeru*; Egawa, Yasunobu*
Journal of Physical Chemistry Letters (Internet), 14(49), p.11235 - 11241, 2023/12
Times Cited Count:5 Percentile:65.84(Chemistry, Physical)Takahama, Ryusei*; Arizono, Mitsutoshi*; Indo, Daigo*; Yoshinaga, Taisei*; Terakura, Chieko*; Takeshita, Nao*; Shirasaki, Takumi*; Noda, Masaaki*; Kuwahara, Hideki*; Kajimoto, Ryoichi; et al.
JPS Conference Proceedings (Internet), 38, p.011114_1 - 011114_6, 2023/05
Kamiya, Junichiro; Nii, Keisuke*; Kabumoto, Hiroshi; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; Matsuda, Makoto; Moriya, Katsuhiro; Ida, Yoshiaki*; et al.
e-Journal of Surface Science and Nanotechnology (Internet), 21(4), p.344 - 349, 2023/05
no abstracts in English
Yokoyama, Sumi*; Hamada, Nobuyuki*; Tsujimura, Norio; Kunugita, Naoki*; Nishida, Kazutaka*; Ezaki, Iwao*; Kato, Masahiro*; Okubo, Hideki*
International Journal of Radiation Biology, 99(4), p.604 - 619, 2023/04
Times Cited Count:3 Percentile:28.45(Biology)In April 2011, the International Commission on Radiological Protection recommended reducing the occupational equivalent dose limit for the lens. Such a new occupational lens dose limit has thus far been implemented in many countries, and there are extensive discussions toward its regulatory implementation in other countries. In Japan, discussions in the Japan Health Physics Society (JHPS) began in April 2013 and in Radiation Council in July 2017, and the new occupational lens dose limit was implemented into regulation in April 2021. To share our experience, we have published a series of papers summarizing situations in Japan: the first paper based on information available by early 2017, and the second paper by early 2019. This paper (our third paper of this series) aims to review updated information available by mid-2022, such as regarding regulatory implementation of the new occupational lens dose limit, recent discussions by relevant ministries based on the opinion from the council, establishment process of safety and health management systems, the JHPS guidelines on lens dose monitoring and radiation safety, voluntary countermeasures of the licensees, development of lens dose calibration method, and recent studies on exposure of the lens in nuclear workers and biological effect on the lens.
Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Nakanishi, Yohei*; Shibata, Motoki*; Takenaka, Mikihito*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki; Miyazaki, Tsukasa*
Soft Matter, 19(11), p.2082 - 2089, 2023/03
Times Cited Count:3 Percentile:54.23(Chemistry, Physical)Nii, Keisuke*; Ida, Yoshiaki*; Ueda, Hideki*; Yamaguchi, Takanori*; Kabumoto, Hiroshi; Kamiya, Junichiro; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; et al.
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.601 - 604, 2023/01
no abstracts in English
Saga, Ryo*; Matsuya, Yusuke; Sato, Hikari*; Hasegawa, Kazuki*; Obara, Hideki*; Komai, Fumio*; Yoshino, Hironori*; Aoki, Masahiko*; Hosokawa, Yoichiro*
Radiotherapy and Oncology, p.109444_1 - 109444_9, 2023/00
Times Cited Count:3 Percentile:55.17(Oncology)When treating non-small cell lung cancer (NSCLC), stereotactic body radiotherapy (SBRT) with high-dose irradiation is often utilized. The fractionation schemes and curative effects can be evaluated by mathematical models for predicting cell survival curve. Such model parameters can be determined from in vitro experiment, but they are empirically determined based on experiences in clinics. As such, there is a large gap between in vitro and clinical study. As such background, translational study between in vitro cell survival and clinical curative effects is necessary. In this study, explicitly considering existence of cancer stem-like cells (CSCs), we developed an all-in-one model for predicting both in vitro cell survival and clinical curative effects (integrated microdosimetric-kinetic (IMK) model) and performed retrospective evaluation of clinical outcomes following SBRT for NSCLC in Hirosaki University Hospital. As a result, the IMK model successfully reproduced both in vitro cell survival and the tumor control probability with various fractionation schemes (i.e., 6-10 Gy per fraction). The developed model would contribute on precisely understanding the impact of CSCs on curative effects after SBRT for NSCLC with high precision.
Sueoka, Shigeru; Iwano, Hideki*; Danhara, Toru*; Okamoto, Akira*; Tagami, Takahiro*
Fuisshon, Torakku Nyusureta, (35), p.1 - 4, 2022/12
no abstracts in English