Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Onoda, Yuichi; Tobita, Yoshiharu; Okano, Yasushi
IAEA-TECDOC-2079, p.215 - 225, 2025/00
The analysis methodologies for the evaluation of unprotected loss of flow accident on sodium-cooled fast reactor in Japan Atomic Energy Agency (JAEA) are briefly explained focusing on the mechanical consequences during expansion phase of the accident. JAEA developed the analysis methodologies for the evaluation of energetics and divided the analysis process into following three: 1) analysis of converting the heat generated into the mechanical energy with SIMMER code, 2) analysis of the structural response of the reactor vessel with AUTODYN code, and 3) analysis of the amount of sodium ejected onto the top shield through the gaps between shield plugs with PLUG code. Pressure-volume relation of the CDA bubble, which is the mixture of gas (fuel, steel vapor and fission gas) and molten core material, obtained by SIMMER calculation is used as the input for structural response analysis with AUTODYN. Pressure history exerted on the lower surface of the top shield obtained by SIMMER calculation is used as the input for PLUG. These analysis codes are validated by simulating the dominant phenomena that significantly affect the results in each calculation. We applied these analysis methodologies developed by JAEA to the reactor case analyses and confirmed their applicability.
Tobita, Yoshiharu; Tagami, Hirotaka; Ishida, Shinya; Onoda, Yuichi; Sogabe, Joji; Okano, Yasushi
IAEA-TECDOC-2079, p.72 - 84, 2025/00
Since the fast reactor core is not in the maximum reactivity configuration, a hypothetical core disruptive accident could lead to the prompt criticality due to a change in the core material configuration, and the resulting energy generation has been one of the issues in fast reactor safety, and therefore appropriate measures are needed to mitigate and contain the effect of energy generated in the accident. In order to assess the effectiveness of these mitigative measures, a set of computer codes to analyze the event progressions and energy generation behavior in the ATWS of fast reactors have been developed, maintained, and improved under international collaboration in JAEA. Since the important physical phenomena, which govern the event progression, vary along with the progression of the accident, the whole accident process is divided into several phases in the analysis of accident, and dedicated analysis methods for each phase are provided to analyze the event progression in each phase. The organization and overview of these analysis methods are described in this paper. As a representative example of the validation approaches in applying these analysis methods to the reactor safety assessment in licensing procedure in Japan, the validation studies to confirm the applicability to reactor analysis of the SIMMER code for analyzing core material movement and reactor power, which is important to analyze the energy generation in the accident, are presented in the paper. The validation studies of the SIMMER code confirmed the applicability of SIMMER to the reactor analysis, while the critical phenomena that the effect of their uncertainty in the reactor analysis should be checked were also recognized.
Tobita, Yoshiharu*; Kondo, Satoru; Suzuki, Toru*
JAEA-Research 2024-011, 39 Pages, 2024/10
The SIMMER-III and SIMMER-IV computer code, developed at the Japan Atomic Energy Agency (JAEA), is a two- and three-dimensional, multi-velocity-field, multi-component fluid-dynamics model, coupled with a space- and time-dependent neutron kinetics model. The codes have been used widely for simulating complex phenomena during core-disruptive accidents in liquid-metal fast reactors. In the multi-velocity-field fluid dynamics, momentum exchange functions (MXFs) are required for treating inter-field drag and fluid-structure friction effects and thereby for accurately simulating reactivity effects of relative motion of core materials. Up to 8 velocity fields can be used in SIMMER-III and SIMMER-IV, with each field exchanging momentum with other fields and structure surfaces. Since both theoretical and experimental knowledge of the momentum exchange processes for a multi-component, multi-velocity flows is limited, the developed MXF formulations are based on engineering correlations of steady-state two-phase flows. Multi-phase flow regimes for both the pool and channel flows are modeled with using an appropriate averaging procedure such as to avoid abrupt changes in MXFs at flow regime transition. The MXF model, together with the multi-phase flow topology and interfacial area model, has been extensively tested through the code assessment (verification and validation) program, which has demonstrated that many of the problems associated with limitation of two velocity fields and simplistic modeling in the previous codes were resolved.
Tobita, Yoshiharu*; Kondo, Satoru; Morita, Koji*
JAEA-Research 2024-010, 77 Pages, 2024/10
The multi-component, multi-phase flow topology and interfacial area model has been developed for the SIMMER-III and SIMMER-IV computer codes, which have been extensively used in liquid-metal fast reactor core-disruptive accident analyses. To systematically simulate complex flow topology, flow regime maps are modeled, for both the pool flow and channel flow regimes, with smooth transition between flow regimes. The interfacial area convection model was formulated to enhance the applicability and flexibility of the codes, by tracing the transport and history of interfaces, and thereby better representing transient physical phenomena. The changes of interfacial areas resulting from such as breakup, coalescence, and production of droplets or bubbles were treated as source terms in the interfacial area convection equation. In a multi-component system of SIMMER-III and SIMMER-IV, all the possible contacts between components are taken into account, and the fluid-to-fluid and fluid-to-structure binary contact areas are prepared for the calculations of heat and mass transfer processes and momentum-exchange functions. The multi-phase flow topology and interfacial area model developed in this study was the first of a kind as a fast reactor safety analysis code. The model has been extensively tested through the code assessment (verification and validation) program, which has demonstrated that many of the problems associated with simplistic modeling in the previous codes were resolved.
Brear, D. J.*; Kondo, Satoru; Sogabe, Joji; Tobita, Yoshiharu*; Kamiyama, Kenji
JAEA-Research 2024-009, 134 Pages, 2024/10
The SIMMER-III/SIMMER-IV computer codes are being used for liquid-metal fast reactor (LMFR) core disruptive accident (CDA) analysis. The sequence of events predicted in a CDA is often influenced by the heat exchanges between LMFR materials, which are controlled by heat transfer coefficients (HTCs) in the respective materials. The mass transfer processes of melting and freezing, and vaporization and condensation are also controlled by HTCs. The complexities in determining HTCs in a multi-component and multi-phase system are the number of HTCs to be defined at binary contact areas of a fluid with other fluids and structure surfaces, and the modes of heat transfer taking into account different flow topologies representing flow regimes with and without structure. As a result, dozens of HTCs are evaluated in each mesh cell for the heat and mass transfer calculations. This report describes the role of HTCs in SIMMER-III/SIMMER-IV, the heat transfer correlations implemented and the calculation of HTCs in all topologies in multi-component, multi-phase flows. A complete description of the physical basis of HTCs and available experimental correlations is contained in Appendices to this report. The major achievement of the code assessment program conducted in parallel with code development is summarized with respect to HTC modeling to demonstrate that the coding is reliable and that the model is applicable to various multi-phase problems with and without reactor materials.
Kondo, Satoru; Tobita, Yoshiharu*; Morita, Koji*; Kamiyama, Kenji; Yamano, Hidemasa; Suzuki, Toru*; Tagami, Hirotaka; Sogabe, Joji; Ishida, Shinya
JAEA-Research 2024-008, 235 Pages, 2024/10
The SIMMER-III and SIMMER-IV computer codes, developed at the Japan Atomic Energy Agency are the codes with two- and three-dimensional, multi-field, multi-component fluid-dynamics models, coupled with a space- and time-dependent neutron kinetics model. The codes have been used widely for simulating complex phenomena during core-disruptive accidents in liquid-metal fast reactors. Advanced features of the codes in comparison with the former codes include: stable and robust fluid-dynamics algorithm with up to 8 velocity fields, improved representation of structures and multi-phase flow topology, comprehensive treatment of complex heat and mass transfer processes, accurate analytic equations of state, a stable and efficient neutron flux shape solution method and decay heat model. This report describes the models and methods of SIMMER-III and SIMMER-IV. For those individual models, the details of which have been reported elsewhere, only the outlines of the models are presented. The reports of code verification and validation have been already published.
Ishida, Shinya; Fukano, Yoshitaka; Tobita, Yoshiharu; Okano, Yasushi
Journal of Nuclear Science and Technology, 61(5), p.582 - 594, 2024/05
Times Cited Count:1 Percentile:25.62(Nuclear Science & Technology)Tagami, Hirotaka; Ishida, Shinya; Okano, Yasushi; Yamano, Hidemasa; Kubo, Shigenobu; Payot, F.*; Saas, L.*; Trotignon, L.*; Gubernatis, P.*; Dufour, E.*; et al.
Proceedings of 11th European Review Meeting on Severe Accident Research Conference (ERMSAR 2024) (Internet), 12 Pages, 2024/05
JAEA has been developing the SIMMER-V code in collaboration with CEA to perform severe accident (SA) simulations of future sodium-cooled fast reactors (SFRs) including a unique core design with large-scale heterogeneous cores. An SA sequence in SFRs has been analyzed by: the SAS4A code for the Initiation Phase (IP), in which fuel pin disruption and vertical fuel dispersion occur in individual fuel subassemblies; and the two-dimensional SIMMER-III or three-dimensional SIMMER-IV code for the Transition Phase (TP), in which core disruption extends to the whole core. The joint development of SIMMER-V is of limited scope but aims at significantly expanding the code applicability by providing flexible interfaces to couple a SIMMER-V calculation with other computational domains or other codes, and by adding new advanced physical models such as a detailed fuel pin model and a model of flexible treatment of fuel isotopic composition. The former tasks are conducted by CEA the latter tasks by JAEA. In parallel to the code development, verification and validation of the new models and methods have been performed. This paper describes the objectives and overall framework of SIMMER-V code development program, representative new elements, and recent development progress.
Ishida, Shinya; Tagami, Hirotaka; Okano, Yasushi; Yamano, Hidemasa; Kubo, Shigenobu; Tobita, Yoshiharu
Proceedings of 11th European Review Meeting on Severe Accident Research Conference (ERMSAR 2024) (Internet), 10 Pages, 2024/05
Tagami, Hirotaka; Tobita, Yoshiharu
Nuclear Engineering and Technology, 56(3), p.873 - 879, 2024/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)A sodium-cooled fast reactor (SFR) core has a potential of prompt criticality due to a change of core material distribution during a severe accident, and the resultant energy release has been one of the safety issues of SFRs. In this study, the safety assessment of an unprotected loss-of-flow (ULOF) in a small SFR (SSFR) has been performed using the SIMMER-IV computer code, which couples the models of space- and time-dependent neutronics and multi-component, multi-field thermal hydraulics in three dimensions. The code, therefore, is applicable to the simulations of transient behaviors of extended disrupted core material motion and its reactivity effects during the transition phase (TP) of ULOF, including a potential of prompt-criticality power excursions driven by fuel compaction. Several conservative assumptions are used in the TP analysis by SIMMER-IV. It was found out that one of the important mechanisms that drives the reactivity-inserting fuel motion was sodium vapor pressure resulted from a fuel-coolant interaction (FCI), which itself was non-energetic local phenomenon. The uncertainties relating to FCI is also evaluated in much conservative way in the sensitivity analysis. From this study, the ULOF characteristics in an SSFR have been understood. Occurrence of recriticality events under conservative assumptions are plausible, but their energy releases are limited.
Tagami, Hirotaka; Ishida, Shinya; Tobita, Yoshiharu
Journal of Nuclear Science and Technology, 60(12), p.1548 - 1562, 2023/12
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In a design of future Sodium-cooled Fast Reactor, there is a demand for evaluation of sequences and consequences of core disruptive accidents. Future SFRs include a unique core design with axially or horizontally heterogeneous core arrangement having complex fuel isotope distribution. A new model to flexibly represent fuel isotope distribution, called the Pu-vector model, has been developed in this study for inclusion in the SIMMER-III and SIMMER-IV codes (simply called as SIMMER). The model calculates movement of individual fuel isotopes, assuming they always accompany the convecting fuel in the fluid-dynamics model. The accuracy of the Pu-vector model was confirmed by comparing with the standard Monte Carlo static neutronics calculation. The new model can improve some of the limitations in the current SIMMER code, in which the fuel isotopes are represented only by two groups, fertile and fissile fuels. Assignment of a number of fuel isotopes to the two groups requires a detailed examination of different combinations of fuel isotopes to determine an optimized combination. The Pu-vector model can eliminate this complicated procedure to be performed prior to a SIMMER analysis, and more importantly provides accurate spatial distribution of fuel isotopes and thus will improve the applicability of SIMMER to the analyses of future large heterogeneous reactors.
Ishida, Shinya; Tagami, Hirotaka; Tobita, Yoshiharu; Okano, Yasushi; Yamano, Hidemasa; Kubo, Shigenobu
Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09
no abstracts in English
Ishida, Shinya; Fukano, Yoshitaka; Tobita, Yoshiharu; Okano, Yasushi
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 8 Pages, 2023/04
Tagami, Hirotaka; Tobita, Yoshiharu
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 8 Pages, 2023/04
Recently, the safety analysis for a licensing of small nuclear power fast reactor is performed. It is necessary to confirm the effectiveness of the design measure to prevent the CV failure in the licensing procedure. Because the energy generation in TP of ULOF is one of the main factors to affect the integrity of CV, the ULOF behavior is analyzed using SIMMER developed under international cooperation. Although the characteristic of TP in small reactor is a slow and mild event progression due to the negative void reactivity, several conservative assumptions are applied in the analysis. Because the prompt criticality by fuel compaction is mainly driven by a fuel coolant interaction, its impact on energy generation is also investigated by conservatively assuming uncertainties. The obtained results by the analysis using SIMMER are used for the subsequent phase to analyze the mechanical integrities of reactor vessel and CV.
Kondo, Satoru; Tobita, Yoshiharu
JAEA-Research 2019-009, 382 Pages, 2020/03
The SIMMER-III computer code, developed at the Japan Atomic Energy Agency (JAEA, the former Power Reactor and Nuclear Fuel Development Corporation), is a two-dimensional, multi-velocity-field, multi-component fluid-dynamics code, coupled with a space- and time-dependent neutron kinetics model. The code is being used widely for simulating complex phenomena during core-disruptive accidents (CDAs) in liquid-metal fast reactors (LMFRs). In parallel to the code development, a comprehensive assessment program was performed in two phases: Phase 1 for verifying individual fluid-dynamics models; and Phase 2 for validating its applicability to integral phenomena important to evaluating LMFR CDAs. The SIMMERIII assessment program was participated by European research and development organizations, and the achievement of Phase 1 was compiled and synthesized in 1996. This report has been edited by revising and reproducing the original 1996 informal report, which compiled the achievement of Phase 1 assessment. A total of 34 test problems were studied in the areas: fluid convection, interfacial area and momentum exchange, heat transfer, melting and freezing, and vaporization and condensation. The problems identified have been reflected to the Phase 2 assessment and later model development and improvement. Although the revisions were made in the light of knowledge base obtained later, the original individual contributions by the participants, both positive and negative, are retained except for editorial changes.
Futemma, Akira; Sanada, Yukihisa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.
JAEA-Technology 2018-016, 98 Pages, 2019/02
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in Fukushima against nuclear emergency response. The results of monitoring around Tomari, Kashiwazaki-Kariwa and Genkai Nuclear Power Station in the fiscal 2017 were summarized in this report. In addition, technical issues were described.
Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; et al.
JAEA-Technology 2018-015, 120 Pages, 2019/02
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. The results in the fiscal 2017 were summarized in this report. In addition, we developed and systemized the discrimination technique of the Rn-progenies. The accuracy of aerial radiation monitoring was evaluated by taking into consideration GPS data error.
Yamano, Hidemasa; Tobita, Yoshiharu
Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 3 Pages, 2018/11
Based on the event tree analysis, the present numerical analyses investigated the capability of fuel discharge through the one-dimensional single fuel assembly geometry and the two-dimensional geometry of a CRGT channel with neighboring fuel assemblies. The single fuel assembly analyses showed that the fuel blockage formed in the lower shielding region because fuel solidified by contacting with cold sodium in case of no fission gas release. On the assumption that fission gas was released, the molten fuel successfully relocated below the core. The next analyses using the CRGT channel indicated a significant fuel discharge through the CRGT channel. This is because the fuel temperature was still high just after the CRGT wall failure and sodium in the CRGT channel was quickly voided just after the ingress of a small amount of molten fuel.
Aoyagi, Mitsuhiro; Kamiyama, Kenji; Tobita, Yoshiharu
Journal of Nuclear Science and Technology, 55(5), p.530 - 538, 2018/05
Times Cited Count:3 Percentile:25.74(Nuclear Science & Technology)Tagami, Hirotaka; Cheng, S.*; Tobita, Yoshiharu; Morita, Koji*
Nuclear Engineering and Design, 328, p.95 - 106, 2018/03
Times Cited Count:12 Percentile:71.33(Nuclear Science & Technology)