Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 31

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Feasibility study result of advanced solution measurement and monitoring technology for reprocessing facility

Sekine, Megumi; Matsuki, Takuya; Suzuki, Satoshi*; Tsutagi, Koichi; Tomikawa, Hirofumi; Nakamura, Hironobu; LaFleur, A.*; Browne, M.*

Proceeding IAEA Symposium on International Safeguards; Building Future Safeguards Capabilities (Internet), 8 Pages, 2018/11

The IAEA has proposed, in its Research and Development plan (STR-385), the development of technology to enable real-time flow measurement of nuclear material as part of an advanced approach to effective and efficient safeguards for reprocessing facilities. To address this, JAEA and JNFL had previously designed and developed a neutron coincidence based non-destructive assay system to monitor Pu in solution directly after a purification process. To enhance this technology for entire reprocessing facilities, as a feasibility study, JAEA has been tackling development of a new detector to enable monitoring of Pu in solutions with numerous fission products (FPs) as a joint research program with the U.S. DOE. In this study, the High Active Liquid Waste (HALW) Storage Facility in Tokai Reprocessing Plant (TRP) was used as the test bed. The design information of the HALW storage tank and radiation (type and intensity) were investigated, to develop a Monte Carlo N-Particle Transport Code (MCNP) model. Then, dose rate distribution inside the concrete cell where the HALW tank is located was measured, to enable design of new detectors and check the integrity of the MCNP model and its applicability. Using the newly-designed detectors, $$gamma$$-rays and neutrons could be measured continuously at the outside/inside of the concrete cell, to optimize detector position and the radiation characteristics. The applicability as a Pu-monitoring technology was evaluated, based on the simulation results and $$gamma$$-ray/neutron measurement results. We have found that there is a possibility to monitor the change of Pu amount in solution by combination of $$gamma$$-ray and neutron measurements. The results of this study suggest a feasibility study into the applicability and capability of Pu monitoring to enhance the entire reprocessing facility handling Pu with FPs. In this paper, a summary of the project will be presented.

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Development of gamma spectra detector for high active liquid waste

Sekine, Megumi; Matsuki, Takuya; Tokoro, Hayate; Tsutagi, Koichi; Kitao, Takahiko; Nakamura, Hironobu; Tomikawa, Hirofumi

Proceedings of INMM 59th Annual Meeting (Internet), 10 Pages, 2018/07

In a reprocessing facility, it is necessary to develop a detector which can measure plutonium (Pu) content in the Pu solutions containing fission products (FP) in order to expand the application of Pu monitoring. In order to establish this technology, JAEA has studied a system measure $$gamma$$-rays was utilized since it applicable for Pu monitoring. Ce:GAGG (Ce:Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$) scintillator detector can measure a wide energy range in a high-dose environment and has reasonable resolution. $$gamma$$-ray measurements were performed inside of the concrete cell containing the High Active Liquid Waste tank at the Tokai reprocessing plant. In the spectra, the two significant peaks were measured by the GAGG above 800 keV and were considered to be from Eu-154. There $$gamma$$-ray measurements will be combined with previous neutron measurements and both will be compared to MCNP models for future Pu monitoring technology. This presentation will describe the detector selection, the design system, the results of $$gamma$$-ray spectral measurements and the applicability for Pu monitoring. This project has been carried out under the support of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese government.

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Design of GAGG detector and gamma spectrum measurement

Sekine, Megumi; Matsuki, Takuya; Tokoro, Hayate; Tsutagi, Koichi; Tomikawa, Hirofumi; Nakamura, Hironobu

Nihon Kaku Busshitsu Kanri Gakkai Dai-38-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2018/04

In a reprocessing facility, it is necessary to develop a detector which is measurable plutonium (Pu) amount in the Pu solution containing the Fission Product (FP) in order to expand the application of Pu monitoring. To investigate $$gamma$$ rays which is applicable for Pu monitoring, Ce:GAGG (Ce: Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$) scintillator which can measure a wide range of energy at high dose and has high resolution (Target: High Active Liquid Waste (HALW)) was newly designed and developed in deal with aim for Pu quantitativeness. $$gamma$$ ray measurement was performed to the HALW in the concrete cell using the detector, and it was confirmed that high energy $$gamma$$ rays (9.5 MeV) could be measured and high energy $$gamma$$ rays spectra over 3 MeV without deriving from FP at the first time. In this presentation, detector design, results of $$gamma$$ ray spectra measurement, applicability evaluation to Pu monitoring and the future plan are presented. This project has been carried out under the support of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese government.

Journal Articles

Feasibility study of advanced measurement technology for solution monitoring at reprocessing plant; Dose rate measurement for the solution including Pu with FP

Matsuki, Takuya; Yamanaka, Atsushi; Sekine, Megumi; Suzuki, Satoshi*; Yasuda, Takeshi; Tsutagi, Koichi; Tomikawa, Hirofumi; Nakamura, Hironobu; LaFleur, A. M.*; Browne, M. C.*

Proceedings of INMM 58th Annual Meeting (Internet), 8 Pages, 2017/07

The Tokai Reprocessing Plant (TRP) has been developing a new detector from 2015 to 2017 for purpose to monitor Pu amount in High Active Liquid Waste (HALW) containing FP. It can make a contribution to an advanced approach to effectively and efficiently conduct safeguards for reprocessing facilities because it becomes available to monitor and verify nuclear material movement continuously by a new detector, which has proposed by IAEA. For the second step of this project, we conducted dose rate measurement on the guide rail installing in the cell storing the HALW tank and comparison between measured dose rate distribution and calculation result by MCNP simulation in order to investigate the dose rate distribution which is needed for shielding design of a new detector that is used for radiation (neutron/$$gamma$$ spectrum) measurement in the cell and inquest on the monitoring position of the detector for Pu monitoring. In this paper, we report the result of the dose rate measurement in the cell, improvement of the simulation model which is cleared by comparison between measurement result and calculation result and our future plan.

Journal Articles

Feasibility study of advanced technology for Pu with FP solution monitoring; Overview of research plan and modelling for simulation

Sekine, Megumi; Matsuki, Takuya; Suzuki, Satoshi; Tanigawa, Masafumi; Yasuda, Takeshi; Yamanaka, Atsushi; Tsutagi, Koichi; Nakamura, Hironobu; Tomikawa, Hirofumi; LaFleur, A. M.*; et al.

EUR-28795-EN (Internet), p.788 - 796, 2017/00

The IAEA has proposed in its long-term R&D plan, the development of technology to enable real-time flow measurement of nuclear material as a part of an advanced approach to effective and efficient safeguards for reprocessing facilities. To address this, JAEA has designed and developed a neutron coincidence based nondestructive assay system to monitor Pu directly in solutions which is after purification process and contains very little fission products (FPs). A new detector to enable monitoring of Pu in solutions with numerous FPs is being developed as a joint research program with U.S. DOE at the High Active Liquid Waste (HALW) Storage Facility in Tokai Reprocessing Plant. As the first step, the design information of HALW tank was investigated and samples of HALW was taken and analyzed for Pu concentration and isotope composition, density, content of dominant nuclides emitting $$gamma$$ ray or neutron, etc. in order to develop a Monte Carlo N-Particle Transport Code (MCNP) of the HALW tank. In addition, $$gamma$$ ray source spectra simulated by Particle and Heavy Ion Transport code System (PHITS) was developed by extracting peaks from the analysis data with germanium detector. These outputs are used for the fundamental data in the MCNP model which is then used to evaluate the type of detector, shielding design and measurement positions. In order to evaluate available radiations to measure outside the cell wall, continuous $$gamma$$ ray and neutron measurement were carried out and the results were compared to the simulation results. The measurement results showed that there are no FP peaks above 3 MeV. This paper presents an overview of the research plan, characteristics of HALW, development of source term for MCNP, simulation of radiation dose from the HALW tank and radiation measurement results at outside of cell wall.

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Composition research of high active liquid waste and radiation measurement results on the surface of cell

Matsuki, Takuya; Masui, Kenji; Sekine, Megumi; Tanigawa, Masafumi; Yasuda, Takeshi; Tsutagi, Koichi; Ishiyama, Koichi; Nishida, Naoki; Horigome, Kazushi; Mukai, Yasunobu; et al.

Proceedings of INMM 57th Annual Meeting (Internet), 9 Pages, 2016/07

The International Atomic Energy Agency (IAEA) has proposed in its long-term research and development (R&D) plan, development of a real-time measurement technology to monitor and verify nuclear material movement continuously as part of an advanced approach to effectively and efficiently conduct safeguards for reprocessing facilities. Since the Tokai Reprocessing Plant (TRP) has solutions containing both Pu and fission products (FP), a new detector development project to monitor Pu with FP is being carried out from 2015 to 2017. This project is mainly conducted in the High Active Liquid Waste Storage (HALWS) in the TRP. For the first step of this project, as the confirmation of composition of high active liquid waste (HALW) to evaluate neutron/$$gamma$$-ray emitted from solution in the selected HALW tank which has the most amount of Pu in HALW tanks at the TRP, we took HALW sample and conducted $$gamma$$-ray spectrum measurement for HALW. As a study of detector setting location, to survey the available neutron/$$gamma$$-ray (i.e. intensity) at the outside surface of the cell where HALW tank is located, we implemented continuous measurement by neutron/$$gamma$$-ray detector. In this paper, we report three $$gamma$$-ray peaks related with $$^{238}$$Pu and $$^{239}$$Pu measured in the composition research of HALW, which is needed to identify Pu amount by the new detector that we are developing and the result of radiation measurement on the surface of the cell.

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Overview and research plan

Sekine, Megumi; Matsuki, Takuya; Tanigawa, Masafumi; Tsutagi, Koichi; Mukai, Yasunobu; Shimizu, Yasuyuki; Nakamura, Hironobu; Tomikawa, Hirofumi

Proceedings of INMM 57th Annual Meeting (Internet), 9 Pages, 2016/07

The International Atomic Energy Agency (IAEA) has proposed in its long-term research and development plan, development of a real-time measurement technology to monitor and verify nuclear material movement continuously as part of an advanced approach to effectively and efficiently conduct safeguards for reprocessing facilities. In the reprocessing plant, since solutions containing both Pu and FP exist, a new detector development project to monitor Pu with FP is being carried out from 2015 to 2017. This project is mainly conducted in the High Active Liquid Waste Storage (HALWS) in Tokai Reprocessing Plant (TRP). In this paper, an overview of the technology development, simulation results of preliminary evaluation of the characteristics of radiation emitted from the HALW tank at TRP, and the future research plan are presented.

Journal Articles

Measurement Result of HALW Storage Tank (272V16)

Tsutagi, Koichi; Shimizu, Ryo; Sugiyama, T.; Nakazawa, Y.; Tanaka, Hitoshi; Watahiki, Masaru; Muto, Hideyo

Saikuru Kiko Giho, (21), p.33 - 40, 2003/00

This report describes the outline of the measurement system of HALW storage tank and a measurement situation, and a thickness measurement result.

JAEA Reports

None

Tsutagi, Koichi; ; Tobita, Noriyuki; Nagai, Shuichiro; ; *; *

PNC-TN8410 91-256, 64 Pages, 1991/05

PNC-TN8410-91-256.pdf:4.7MB

None

JAEA Reports

None

Tsutagi, Koichi; ; Tobita, Noriyuki; ; *; *

PNC-TN8410 91-174, 40 Pages, 1991/02

PNC-TN8410-91-174.pdf:5.06MB

None

JAEA Reports

None

Nagai, Shuichiro; ; Tobita, Noriyuki; ; Tsutagi, Koichi; *;

PNC-TN8410 91-010, 49 Pages, 1991/01

PNC-TN8410-91-010.pdf:1.61MB

None

JAEA Reports

None

*; Tobita, Noriyuki; ; Tsutagi, Koichi;

PNC-TN8430 88-004, 41 Pages, 1988/10

PNC-TN8430-88-004.pdf:4.21MB

None

JAEA Reports

None

*; Tobita, Noriyuki; ; Tsutagi, Koichi; *; *

PNC-TN8430 88-006, 73 Pages, 1988/09

PNC-TN8430-88-006.pdf:11.16MB

None

JAEA Reports

None

*; Tobita, Noriyuki; ; Tsutagi, Koichi; *; *

PNC-TN8430 88-003, 59 Pages, 1988/08

PNC-TN8430-88-003.pdf:7.22MB

None

JAEA Reports

None

*; Tobita, Noriyuki; ; Tsutagi, Koichi; ; Shikakura, Sakae*

PNC-TN8430 88-002, 95 Pages, 1988/06

PNC-TN8430-88-002.pdf:10.98MB

None

JAEA Reports

None

Shikakura, Sakae; Tobita, Noriyuki; ; Toyoshima, Nitsuo; Tsutagi, Koichi;

PNC-TN8430 88-015, 40 Pages, 1988/01

PNC-TN8430-88-015.pdf:5.13MB

None

JAEA Reports

None

Shikakura, Sakae*; Tobita, Noriyuki; ; Tsutagi, Koichi; *

PNC-TN8420 87-003, 88 Pages, 1987/05

PNC-TN8420-87-003.pdf:19.7MB

None

JAEA Reports

None

*; ; Kaya, Akira*; *; *; Tsutagi, Koichi; *; *

PNC-TN843 84-05, 168 Pages, 1984/04

PNC-TN843-84-05.pdf:8.96MB

None

Oral presentation

MOX reprocessing at TRP, 7; Behavior of Iodine-131 from high active waste storage in Tokai Reprocessing Plant

Shirato, Yoji; Yamanaka, Atsushi; Tsutagi, Koichi; Yoshino, Yasuyuki; Kishi, Yoshiyuki; Isobe, Hiroyasu

no journal, , 

no abstracts in English

Oral presentation

Replacement of filter casing in the vessel ventilation of HAW storage process at the Tokai reprocessing plant

Isozaki, Toshihiko; Tsutagi, Koichi; Shirato, Yoji; Nakazawa, Yutaka; Kake, Yasuhiro; Furukawa, Shinichi

no journal, , 

no abstracts in English

31 (Records 1-20 displayed on this page)