Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 49

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Discussion; Making databases of parameter values of radionuclide transfer in environment and application for biospheric dose assessment

Takahashi, Tomoyuki*; Uchida, Shigeo*; Takeda, Seiji; Nakai, Kunihiro*

KURNS-EKR-11, p.97 - 102, 2021/03

This paper outlines the status of IAEA database compilation for migration parameters depending elements in a biosphere such as soil-to-plant transfer factor and bioconcentration factor of marine products, and the status of utilization of the database in dose evaluation of radioactive waste disposal in Japan. Additionally, in the case of applying a new database to the dose evaluation for future radioactive waste disposal in a specific area. We summarized the opinions of specialists and result of general discussion about future strategies to make a new database for their parameters, perspectives to be considered in it, issues, etc.

Journal Articles

Quantitative evaluation of texture and dislocations during annealing after hot deformation in austenitic steel using neutron diffraction

Tomota, Yo*; Sato, Shigeo*; Uchida, M.*; Xu, P. G.; Harjo, S.; Gong, W.; Kawasaki, Takuro

Materials Science Forum, 905, p.25 - 30, 2017/08

Journal Articles

Synergic effects of ion irradiations (La, Ce) and alkaline pretreatment (KOH) on hydriding kinetic property of a Mm-Ni based alloy

Abe, Hiroshi; Aone, Shigeo*; Morimoto, Ryo*; Uchida, Hirohisa*

Journal of Alloys and Compounds, 580(Suppl.1), p.S219 - S221, 2013/12

 Times Cited Count:5 Percentile:36.63(Chemistry, Physical)

no abstracts in English

Journal Articles

Transmission properties of C$$_{60}$$ ions through micro- and nano-capillaries

Tsuchida, Hidetsugu*; Majima, Takuya*; Tomita, Shigeo*; Sasa, Kimikazu*; Narumi, Kazumasa; Saito, Yuichi; Chiba, Atsuya; Yamada, Keisuke; Hirata, Koichi*; Shibata, Hiromi*; et al.

Nuclear Instruments and Methods in Physics Research B, 315, p.336 - 340, 2013/11

 Times Cited Count:3 Percentile:29.69(Instruments & Instrumentation)

Journal Articles

Effects of ultra-intense laser driven proton beam on the hydriding property of palladium

Abe, Hiroshi; Orimo, Satoshi; Kishimoto, Masahiko*; Aone, Shigeo*; Uchida, Hirohisa*; Daido, Hiroyuki; Oshima, Takeshi

Nuclear Instruments and Methods in Physics Research B, 307, p.218 - 220, 2013/07

 Times Cited Count:1 Percentile:12.7(Instruments & Instrumentation)

We investigated the structure changes of a hydrogen storage alloy by ion irradiations, and its absorption property in order to obtain basic data and to elucidate relevant mechanisms of hydrogen absorption by the influence of the irradiation. In previous studies, the induction of vacancies in a hydrogen absorption alloy was found to be effective to increase in the hydrogen absorption rate. As well known, the rate of hydrogen absorption strongly depends upon the surface state of a hydrogen storage alloy because the dissociation of hydrogen molecules or water molecules needs electron change with the surface in the H$$_{2}$$ gas or electrochemical reaction process. In this study, ion irradiations were made at a room temperature using the laser driven proton beam method, at Kansai Photon Science Institute, Japan Atomic Energy Agency. The beam treatment has several unique properties such as short pulse duration, high peak current, low transverse emittance, and wide energy range from KeV to MeV. The irradiation was used to modify the alloy surface using this equipment. From obtained results, the initial hydrogen absorption rate was found improved by the laser driven proton beam rather more effectively than a mono-energetic proton beam. Discussion is made on the correlation among proton irradiation (laser driven proton or mono-energetic proton) and the initial hydrogen absorption rate of the alloy. We argue about the usefulness of an energy spread beam.

Journal Articles

Improvement of hydrogen absorption characteristics of Pd using irradiation of heavey ions

Abe, Hiroshi; Aone, Shigeo*; Morimoto, Ryo*; Uchida, Hirohisa*; Oshima, Takeshi

Transactions of the Materials Research Society of Japan, 36(1), p.133 - 135, 2011/03

The introduction of vacancies in Pd was found to be effective for an increase in the initial hydrogen absorption rate in a previous study. Also, it was reported that the initial hydrogen absorption rate depends strongly on the surface conditions of metals. Heavy ions with keV ranges can create severe damage and high densities of vacancy near the surface of materials. As well known, the formation of hydride phases can be facilitated by the presence of vacancy because vacancy acts as hydrogen trapping site to form hydrides. Thus, the hydrogen absorption characteristics of Pd may be improved by the irradiation of heavy ions. As a result, the initial hydrogen absorption rate increased due to ion irradiation, and the value became 3$$sim$$10 times higher than un-irradiated Pd.

Journal Articles

Development of monitoring system for land transport conditions of nuclear materials

Yamamoto, Kiyoaki; Yuasa, Wataru; Uchida, Shinichi; Inose, Shoichi; Fujiwara, Shigeo

Proceedings of 16th International Symposium on the Packaging and Transport of Radioactive Materials (PATRAM 2010) (CD-ROM), 6 Pages, 2010/10

It is very important to monitor land transport conditions continually in order to implement the safe and smooth transport of nuclear materials, especially to quickly obtain the accurate visual information and carry out emergency response swiftly and properly in the event of transport accident. Plutonium Fuel Development Center of JAEA developed the system for real-time monitoring of transport conditions of nuclear materials. The location information from GPS is transmitted to ground station from transport monitoring equipment installed on vehicle of convoy via the satellite, and transmitted to the TransportControlCenter (TCC) periodically through telephone line. The location information from GPS is also directly transmitted to ground station from transport monitoring equipment by ground wave and transmitted to TCC through telephone line. In both cases, location information is shown on a monitoring panel in TCC. Image monitoring system is one for transmitting motion picture taken by cameras equipped on the roof of vehicle of convoy to TCC through ground wave and showing it on a monitoring panel in TCC. It is also possible to transmit image to TCC with this system, which is taken by the portable camera for emergency response. The camera is taken out of transport monitoring equipment, installed on the proper place, and remotely controlled from TCC. For the development of transport conditions monitoring system, following requirements were considered taking into account the use in emergency response and long-term transport, -Compactness to fit limited space on the vehicles -Applicability for conditions in vibration and temperature change anticipated in transport operation. -Long-term stability and redundancy of power supply The developed system is very useful not only for monitoring normal transport conditions but also for planning emergency response program because it can transmit accurate visual information to TCC in the event of transport accident.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2006

Nishio, Kazuhisa; Matsuoka, Toshiyuki; Mikake, Shinichiro; Tsuruta, Tadahiko; Amano, Kenji; Oyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Yoshida, Haruo*; et al.

JAEA-Review 2009-001, 110 Pages, 2009/03

JAEA-Review-2009-001.pdf:49.84MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in 2006 fiscal year, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2005

Nishio, Kazuhisa; Matsuoka, Toshiyuki; Mikake, Shinichiro; Tsuruta, Tadahiko; Amano, Kenji; Oyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Yoshida, Haruo*; et al.

JAEA-Review 2008-073, 99 Pages, 2009/03

JAEA-Review-2008-073-1.pdf:37.33MB
JAEA-Review-2008-073-2.pdf:37.16MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in 2005 fiscal year, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

Journal Articles

Effects of ion irradiation on hydrogen storage characteristics of alkaline pretreatment Mm alloy

Abe, Hiroshi; Aone, Shigeo*; Uchida, Hirohisa*; Oshima, Takeshi

JAEA-Review 2008-055, JAEA Takasaki Annual Report 2007, P. 145, 2008/11

no abstracts in English

Journal Articles

Carbon-14 transfer into rice plants from a continuous atmospheric source; Observations and model predictions

Koarashi, Jun; Davis, P. A.*; Galeriu, D.*; Melintescu, A.*; Saito, Masahiro*; Siclet, F.*; Uchida, Shigeo*

Journal of Environmental Radioactivity, 99(10), p.1671 - 1679, 2008/10

 Times Cited Count:12 Percentile:30.87(Environmental Sciences)

Carbon-14 ($$^{14}$$C) is one of the most important radionuclides from the perspective of dose estimation due to the nuclear fuel cycle. Ten years of monitoring data on $$^{14}$$C in airborne emissions, in atmospheric CO$$_{2}$$ and in rice grain collected around the Tokai reprocessing plant (TRP) showed an insignificant radiological effect of the TRP-derived $$^{14}$$C on the public, but suggested a minor contribution of the TRP-derived $$^{14}$$C to atmospheric $$^{14}$$C concentrations, and an influence on $$^{14}$$C concentrations in rice grain at harvest. This paper also summarizes a modelling exercise (the so-called rice scenario of the IAEA's EMRAS program) in which $$^{14}$$C concentrations in air and rice predicted with various models were compared with observed concentrations. The modelling results showed that Gaussian plume models with different assumptions predict monthly-averaged $$^{14}$$C concentrations in air well and also that specific activity and dynamic models were equally good for the prediction of inter-annual changes in $$^{14}$$C concentrations in rice grain.

JAEA Reports

Mizunami Underground Research Laboratory project program for fiscal year 2007

Nishio, Kazuhisa; Mizuno, Takashi; Oyama, Takuya; Nakama, Shigeo; Saegusa, Hiromitsu; Takeuchi, Ryuji; Amano, Kenji; Tsuruta, Tadahiko; Hama, Katsuhiro; Iyatomi, Yosuke; et al.

JAEA-Review 2007-038, 31 Pages, 2007/12

JAEA-Review-2007-038.pdf:11.5MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three Phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the Project is under the Construction Phase. This document presents the following 2007 fiscal year plan of the Construction Phase based on the MIU Master Plan updated in 2002, (1)Investigation Plan at the MIU Construction Site, (2)Construction Plan at the MIU Construction Site, (3)Research Collaboration Plan.

JAEA Reports

Mizunami Underground Research Laboratory project program for fiscal year 2006

Nishio, Kazuhisa; Mizuno, Takashi; Oyama, Takuya; Nakama, Shigeo; Saegusa, Hiromitsu; Takeuchi, Ryuji; Amano, Kenji; Tsuruta, Tadahiko; Hama, Katsuhiro; Iyatomi, Yosuke; et al.

JAEA-Review 2007-037, 29 Pages, 2007/12

JAEA-Review-2007-037.pdf:13.06MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three Phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the Project is under the Construction Phase. This document presents the following 2006 fiscal year plan of the Construction Phase based on the MIU Master Plan updated in 2002, (1)Investigation Plan at the MIU Construction Site, (2)Construction Plan at the MIU Construction Site, (3)Research Collaboration Plan.

JAEA Reports

Final report on the surface-based investigation (phase I) at the Mizunami Underground Laboratory project

Saegusa, Hiromitsu; Seno, Yasuhiro; Nakama, Shigeo; Tsuruta, Tadahiko; Iwatsuki, Teruki; Amano, Kenji; Takeuchi, Ryuji; Matsuoka, Toshiyuki; Onoe, Hironori; Mizuno, Takashi; et al.

JAEA-Research 2007-043, 337 Pages, 2007/03

JAEA-Research-2007-043.pdf:28.14MB

The Mizunami Underground Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency at Mizunami City in Gifu Prefecture, central Japan. This report summarizes the results of the Surface-based Investigation Phase, identifies future issues and provides direction for research to be conducted during Construction Phase and Operation Phase. The results compiled in this report will be utilized for the technical knowledge base on geological disposal of HLW, and can be used to enhance the technical basis for waste disposal in general and for development of government regulations.

Journal Articles

Development of a code MOGRA for predicting the migration of ground additions and its application to various land utilization areas

Amano, Hikaru; Takahashi, Tomoyuki*; Uchida, Shigeo*; Matsuoka, Shungo*; Ikeda, Hiroshi*; Hayashi, Hiroko*; Kurosawa, Naohiro*

Journal of Nuclear Science and Technology, 40(11), p.975 - 979, 2003/11

 Times Cited Count:2 Percentile:19.75(Nuclear Science & Technology)

MOGRA is a migration prediction code for toxic ground additions including radioactive materials in a terrestrial environment. MOGRA consists of computational codes that are applicable to various evaluation target systems, and can be used on personal computers. The computational code has the dynamic compartment analysis block, GUI for computation parameter settings and results displays, data bases. The compartments are obtained by classifying various natural environments into groups that exhibit similar properties. A hypothetical combination of land usage was supposed to check the function of MOGRA. The land usage was consisted from cultivated lands, forests, uncultivated lands, urban area, river, and lake. Each land usage has its own inside model which is basic module. Also supposed was homogeneous contamination of the surface land from atmospheric deposition of $$^{137}$$Cs (1.0 Bq/m$$^{2}$$). The system analyzed the dynamic changes of $$^{137}$$Cs concentrations in each compartment, fluxes from one compartment to another compartment.

Journal Articles

MOGRA-DB; Database system for migration prediction code MOGRA

Amano, Hikaru; Ikeda, Hiroshi*; Sasaki, Toshihisa*; Matsuoka, Shungo*; Kurosawa, Naohiro*; Takahashi, Tomoyuki*; Uchida, Shigeo*

KEK Proceedings 2003-11, p.239 - 244, 2003/11

A Code MOGRA (Migration Of GRound Additions) is a migration prediction code for toxic ground additions including radioactive materials in a terrestrial environment, which consists of computational codes that are applicable to various evaluation target systems, and can be used on personal computers. The computational code has the dynamic compartment analysis block at its core, the graphical user interface (GUI) for model formation, computation parameter settings, and results displays. The code MOGRA has varieties of databases, which is called MOGRA-DB. Another additional code MOGRA-MAP can take in graphic map and calculate the square measure about the target land.

JAEA Reports

Proceedings of the International Symposium: Transfer of Radionuclides in Biosphere, Prediction and Assessment; Mito, December 18-19, 2002

Amano, Hikaru; Uchida, Shigeo*

JAERI-Conf 2003-010, 394 Pages, 2003/09

JAERI-Conf-2003-010.pdf:25.13MB

The International Symposium : Transfer of Radionuclides in Biosphere, Prediction and Assessment was held at Mito on the 18th and 19th of Dec. 2002. This Symposium was organized by the Interchange Committee on Radionuclide Transfer in Soil Ecosphere. This project is the 3rd Phase Crossover Research, which is engaged in cooperation with five organizations:JAERI, MRI, NIRS, RIKEN and IES. The main objective of this symposium is to discuss and exchange recent findings and ideas in the area of the behavior and transfer of radionuclides in biosphere. One of the important topics in this symposium is to discuss a suitable transfer model and transfer parameters which may be adapted for Southeast Asian countries including Japan, as environmental conditions and foodstuffs in this region are significantly different from those in Europe and North America. The symposium consisted of 12 invited lectures and 44 poster presentations. The 120 participants attended the symposium, including 19 foreigners coming from 12 countries.

Journal Articles

Status of development of a code for predicting the migration of ground additions: MOGRA

Amano, Hikaru; Takahashi, Tomoyuki*; Uchida, Shigeo*; Matsuoka, Shungo*; Ikeda, Hiroshi*; Hayashi, Hiroko*; Kurosawa, Naohiro*

JAERI-Conf 2003-010, p.32 - 36, 2003/09

MOGRA (Migration Of GRound Additions) is a migration prediction code for toxic ground additions including radioactive materials in a terrestrial environment. MOGRA consists of computational codes that are applicable to various evaluation target systems, and can be used on personal computers. The computational code has the dynamic compartment analysis block at its core, the graphical user interface (GUI) for computation parameter settings and results displays, data files and so on. The compartments are obtained by classifying various natural environments into groups that exhibit similar properties. MOGRA has varieties of databases, which consist of radionuclides decay chart, distribution coefficients between solid and liquid, transfer factors from soil to plant, transfer coefficients from feed to beef and milk, concentration factors, and age dependent dose conversion factors for many radionuclides. Here the status of development of MOGRA is presented.

Journal Articles

Application of MOGRA for migration of contaminants through different land utilization areas

Amano, Hikaru; Takahashi, Tomoyuki*; Uchida, Shigeo*; Matsuoka, Shungo*; Ikeda, Hiroshi*; Hayashi, Hiroko*; Kurosawa, Naohiro*

JAERI-Conf 2003-010, p.112 - 121, 2003/09

The functionality of MOGRA is being verified by applying it in the analyses of the migration rates of radioactive substances from the atmosphere to soils and plants and flow rates into the rivers. This has been achieved by also taking their mode classifications into consideration. In this report, a hypothetical combination of land usage was supposed to check the function of MOGRA. The land usage was consisted from cultivated lands, forests, uncultivated lands, urban area, river, and lake. Each land usage has its own inside model which is basic module. Also supposed was homogeneous contamination of the surface land from atmospheric deposition of Cs-137 (1.0 Bq/m$$^{2}$$). The system can analyze the dynamic changes of Cs-137 concentrations in each compartment, fluxes from one compartment to another compartment.

Journal Articles

Overview of the 3rd phase crossover research on migration of radionuclides in biosphere

Uchida, Shigeo*; Amano, Hikaru; Takahashi, Tomoyuki*; Chiba, Masaru*; Hisamatsu, Shunichi*; Enomoto, Shuichi*; Matsumoto, Shiro*

JAERI-Conf 2003-010, p.25 - 31, 2003/09

In the 3rd Stage Crossover Research (1998 to 2003), a project on Development of a dynamic transfer model of radionuclides in the soil ecosphere,is currently being promoted. The following five researches are carried out in this project. 1) Research into the forms of existence of nuclides and their change in the soil (NIRS and JAERI), 2) Research into the transition behavior of radionuclides in plants (IES, RIKEN and NIRS), 3) Research into the relation to the microorganism and on environmental remediation (RIKEN, JAERI and NIRS), 4) Research on the migration of radionuclides from atmosphere to soil and plant (MRI and JAERI), and 5) Database construction on transfer parameters (JAERI, NIRS and MRI). JAERI, MRI and NIRS are working on the development of a dynamic transfer model such as MOGRA for radionuclides on the basis of a gained knowledge about the environmental behavior through cooperation with universities, etc. This model is also capable of the predicting the behavior of materials that are harmful to the environment such as hazardous heavy metals discharged in the soil ecosphere. In this presentation, we will overview the ourcome of the 3rd stage research.

49 (Records 1-20 displayed on this page)