Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 25

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Progress in conceptual design of a pool-type sodium-cooled fast reactor in Japan

Kato, Atsushi; Kubo, Shigenobu; Chikazawa, Yoshitaka; Miyagawa, Takayuki*; Uchita, Masato*; Suzuno, Tetsuji*; Endo, Junji*; Kubo, Koji*; Murakami, Hisatomo*; Uzawa, Masayuki*; et al.

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 11 Pages, 2022/04

The authors are carrying out conceptual design studies for a pool-type sodium-cooled fast reactor. There are main challenges such as measures against severe earthquake in Japan, thermal hydraulic in a reactor vessel (RV), a decay heat removal system design. When the JP-pool SFR of 650 MWe is installed in Japan, it shall be designed against the severe seismic conditions. Additionally, a newly three-dimensional seismic isolation system is under development.

Journal Articles

Fundamental study on seismic safety margin for seismic isolated structure using the laminated rubber bearings

Fukasawa, Tsuyoshi*; Miyagawa, Takayuki*; Uchita, Masato*; Yamamoto, Tomohiko; Miyazaki, Masashi; Okamura, Shigeki*; Fujita, Satoshi*

Nihon Kikai Gakkai Rombunshu (Internet), 87(898), p.21-00007_1 - 21-00007_17, 2021/06

This paper describes a fundamental study on the seismic safety margin for the isolated structure using laminated rubber bearings. The variation of the seismic response assumed in the isolated structure will occur under the superposition of "Variations in seismic response due to input ground motions" and "Error with design value accompanying manufacture of the isolation devices ". The seismic response analysis which allows to their conditions is important to assess the seismic safety margin for the isolated structure. This paper clarifies that the seismic safety margin of the isolated structure, which consists of rubber bearings, for Sodium-cooled Fast Reactor (SFR) is ensured against the basis ground motions of Japan Electric Association Guide 4601 (JEAG4601) and SFR through the seismic response analysis considering the variation factors of seismic response. In addition, a relationship between the seismic safety margin and the excess probability of linearity limits is discussed using the results of seismic response analysis.

Journal Articles

A Conceptual design study of pool-type sodium-cooled fast reactor with enhanced anti-seismic capability

Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.

Mechanical Engineering Journal (Internet), 7(3), p.19-00489_1 - 19-00489_16, 2020/06

The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.

Journal Articles

A Conceptual design study of pool-type sodium-cooled fast reactor with enhanced anti-seismic capability

Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.

Journal Articles

Seismic evaluation for a large-sized reactor vessel targeting SFRs in Japan

Uchita, Masato*; Miyagawa, Takayuki*; Dozaki, Koji*; Chikazawa, Yoshitaka; Kubo, Shigenobu; Hayafune, Hiroki; Suzuno, Tetsuji*; Fukasawa, Tsuyoshi*; Kamishima, Yoshio*; Fujita, Satoshi*

Proceedings of 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) (CD-ROM), p.380 - 386, 2018/04

It is well-known that pool-type SFRs are the main streams recently in a field of Generation IV reactors. The pool-type encloses primary pumps and IHXs located around the core barrel in a main vessel. Consequently, the main vessel diameter trends to be larger than that of loop-types. From the viewpoint of commercialization in the future, a target of the vessel diameter and its weight including Sodium coolant will increase further. In this paper, the prospects are described in terms of seismic design and structural integrity for the thermal loadings to prevent buckling of the reactor vessel based on parameter studies with diameters of the vessel. In addition, the seismic isolation device which will be effective as a countermeasure is proposed in order to secure a margin against buckling of a large reactor vessel.

JAEA Reports

Design study on sodium-cooled reactor; Results of the studies in 2004 (Joint research)

Hishida, Masahiko; Murakami, Tsutomu*; Kisohara, Naoyuki; Fujii, Tadashi; Uchita, Masato*; Hayafune, Hiroki; Chikazawa, Yoshitaka; Usui, Shinichi; Ikeda, Hirotsugu; Uno, Osamu; et al.

JAEA-Research 2006-006, 125 Pages, 2006/03

JAEA-Research-2006-006.pdf:11.55MB

In Phase I of the "Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)", an advanced loop type reactor has been selected as a promising concept of sodium-cooled reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase II, design improvement for further cost reduction and the establishment of the plant concept has been performed. In this study, reactor core design and large-scale plant design have been performed by adopting the modified fuel assembly with inner duct structure and double-wall straight tube steam generator (SG), which concepts were chosen at the interim review of FY 2003. For this SG, safety logics have been studied and the structural concept has been established. And the plant designs improving the in-service inspection (ISI) and repair capability have been performed. Furthermore, elaborate confirmation of the design has been performed reflecting the development of elemental technology, back-up concepts have been proposed. Besides, cost reduction measures have been studied by reducing reactor grade materials, introducing autonomous standardizations, simplifying the design due to deregulation and adopting systemized standards for BOP and NSSS. From now on, reflecting the results of elemental experiments, in-depth design studies and examination of critical issues will be carried out and the plant concept will accomplish in preparation for the final evaluation in Phase II.

Journal Articles

Component function of self actuated shutdown system in the experimental fast reactor JOYO

Takamatsu, Misao; Sekine, Takashi; Uchita, Masato*; Harada, Kiyoshi*

Proceedings of 13th International Conference on Nuclear Engineering (ICONE-13), 0 Pages, 2005/05

Self actuated shutdown system (SASS) with a Curie point electromagnet (CPEM) is being developed for use in a large scale fast breeder reactor (FBR) in order to establish the passive shutdown capability against anticipated transient without scram (ATWS) events. In order to confirm the stability of CPEM in holding the control rod and demonstrate the functions of the driving system to re-connect and pull out the control rod under the actual reactor-operational environment, the component function test using the reduced-scale model experimental equipment of SASS was conducted in the experimental fast reactor JOYO MK-III. As a result of this test conducted for 117 days during the 1st and 2nd operational cycles of JOYO MK-III from May to Oct. 2004, the rod-holding stability and the recovering functions of the driving system were fully confirmed. A neutron fluence of over 6$$times$$1018n/cm2 (E$$>$$0.1MeV) was obtained for CPEM. This corresponded to 60 years of use in a large-scale FBR and satisfied the required fluence for stability assurance. The results also will likely dispel the apprehensiveness about the operational trouble involving the unexpected drop of SASS.

Journal Articles

Construction of Sodium-cooled Medium-scale Modular Reactor in Consideration of In-service Inspection and Repair

Hishida, Masahiko; Konomura, Mamoru; Uchita, Masato; Iitsuka, Toru*; Kamishima, Yoshio*

Proceedings of 2005 International Congress on Advances in Nuclear Power Plants (ICAPP '05) (CD-ROM), P. 5112, 2005/05

An innovative concept of medium-scale sodium-cooled modular reactor, named M-JSFR, has been created as based on the large-scale advanced loop type fast reactor concept. M-JSFR employs other concepts such as standardization and learning effects by designing as a modular plant and reduction of secondary loop number for the purpose of dissolving the scale-demerit. On this M-JSFR, some improvements are performed to overcome the weak point (strong chemical activity of sodium) of a sodium-cooled reactor and to achieve in-service inspection (ISI) and repair as easily as in light water reactors. Based on the ISI guidelines for light water reactors, the ISI procedures are reviewed reflecting the characteristics of M-JSFR. A guideline for ISI with the same grade of that of the light water reactors is established and major components subjected to ISI are selected. Moreover, suitable ISI procedures for each selected major component are proposed, and a plant concept amenable to ISI is studied. As the result of these studies, the construction cost of ISI&R reinforcement M-JSFR increases about 3% mainly because of the diameter expansion of reactor vessel.

JAEA Reports

Design Study on Sodium-Cooled Large-Scale Reactor

Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki; Hayafune, Hiroki; Hori, Toru; Fujii, Tadashi; Uchita, Masato; Chikazawa, Yoshitaka; Uno, Osamu; Saigusa, Toshiie; et al.

JNC TY9400 2004-014, 78 Pages, 2004/07

JNC-TY9400-2004-014.pdf:7.97MB

This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared.

JAEA Reports

Design Study on Sodium-Cooled Middle-Scale Modular Reactor

Hishida, Masahiko; Murakami, Tsutomu; Kisohara, Naoyuki; Fujii, Tadashi; Uchita, Masato; Hayafune, Hiroki; Chikazawa, Yoshitaka; Hori, Toru; Saigusa, Toshiie; Uno, Osamu; et al.

JNC TY9400 2004-012, 97 Pages, 2004/07

JNC-TY9400-2004-012.pdf:12.55MB

Based on the concept of a plant consisting of four modules with a capacity of 750 MWe each, which has been established by the end of FY2002, a concept of the entire plant was proposed, reflecting the modifications related to the high internal conversion type core, the double-wall straight tube steam generator (SG), and the fuel storage system. Concept studies were also performed to overcome the drawbacks of the sodium and to achieve in-service inspection and repair as easily as in light water reactor. Furthermore, feasibility studies were carried out to confirm the design, which included safety, thermal-hydraulics and the structures of the primary reactor auxiliary cooling system and the double-wall straight tube SG. A prospect for realization of this plant concept has been obtained through the evaluation results. In addition, as the interim evaluation of the candidate concepts of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three medium-scale reactor candidate concepts were prepared.

JAEA Reports

Feasibility Study on Commercialization of Fast Breeder Reactor Cycle Systems Interim Report of Phase II; Technical Study Report for Reactor Plant Systems

Konomura, Mamoru; Ogawa, Takashi; Okano, Yasushi; Yamaguchi, Hiroyuki; Murakami, Tsutomu; Takaki, Naoyuki; Nishiguchi, Youhei; Sugino, Kazuteru; Naganuma, Masayuki; Hishida, Masahiko; et al.

JNC TN9400 2004-035, 2071 Pages, 2004/06

JNC-TN9400-2004-035.pdf:76.42MB

The attractive concepts for Sodium-, lead-bismuth-, helium- and water-cooled FBRs have been created through using typical plant features and employing advanced technologies. Efforts on evaluating technological prospects of feasibility have been paid for these concepts. Also, it was comfirmed if these concepts satisfy design requierments of capability and performance presumed in the feasibilty study on commertialization of Fast Breeder Reactor Systems. As results, it was concluded that the selection of sodium-cooled reactor was most rational for practical use of FBR technologies in 2015.

JAEA Reports

Design Study on Sodium-Cooled Middle-Scale Modular Reactor

Kisohara, Naoyuki; Hishida, Masahiko; Nibe, Nobuaki; Hori, Toru; Fujii, Tadashi; Uchita, Masato; Chikazawa, Yoshitaka; Saigusa, Toshiie; Uno, Osamu; Soman, Yoshindo; et al.

JNC TY9400 2003-015, 103 Pages, 2003/09

JNC-TY9400-2003-015.pdf:6.39MB

In Phase I of the "Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)", an advanced loop type reactor has been selected as a promising concept of sodium-cooled middle-scale modular reactor, which has a possibility to fulfill the design requirements of the F/S. This report summarizes the results of the design study on the sodium-cooled middle-scale modular reactor performed in JFY2002, which is the second year of Phase 2. The construction cost of the sodium-cooled middle-scale modular reactor, which has been constructed in JFY2002, was almost achieved the economical goal. But its achievability was not sufficient to accept the concept. In order to reduce the construction cost, the plant concept has been re-constructed based on the 50 MWe plant studied in JFY2002. After that, fundamental specifications of main systems and components for the new concept have been set, and critical subjects have been examined and evaluated. In addition, in order to achieve the further cost reduction, the plant with simplified secondary system, the plant with electric magnetic pump in secondary system, and the fuel handling system are examined and evaluated. As a result of this study, the plant concept of the sodium-cooled middle-scale modular reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowingdown candidate concepts at the end of Phase 2.

JAEA Reports

Design Study on Sodium-Cooled Large-Scale Reactor

Kisohara, Naoyuki; Hishida, Masahiko; Nibe, Nobuaki; Hori, Toru; Fujii, Tadashi; Uchita, Masato; Chikazawa, Yoshitaka; Saigusa, Toshiie; Uno, Osamu; Soman, Yoshindo; et al.

JNC TY9400 2003-014, 52 Pages, 2003/09

JNC-TY9400-2003-014.pdf:3.12MB

In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2002, which is the second year of Phase 2. In the JFY2002 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated.As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects.

JAEA Reports

The Report of inspection and repair technology of sodium cooled reactors

Kisohara, Naoyuki; Uchita, Masato; Konomura, Mamoru; Kasai, Shigeo; Soman, Yoshindo; Shimakawa, Yoshio; Hori, Toru; Chikazawa, Yoshitaka; Miyahara, Shinya; Hamada, Hirotsugu; et al.

JNC TN9400 2003-002, 109 Pages, 2002/12

JNC-TN9400-2003-002.pdf:8.12MB

Sodium is the most promising candidate of an FBR coolant because of its excellent properties such as high thermal conductivity. Whereas, sodium reacts with water/air and its opaqueness makes it difficult to inspect sodium components. These weaknesses of sodium affect not only plant safety but also plant availability (economy). To overcome these sodium weak points, the appropriate countermeasure must be adopted to commercialized FBR plants. This report describes the working group activities for sodium/water reaction of steam generators (SG), in-service inspection for sodium components and sodium leak due to sodium components boundary failure. The prospect of each countermeasure is discussed in the viewpoint of the commercialized FBR plants. (1)Sodium/water reaction. The principle of the countermeasure for sodium/water reaction accidents was organized in the viewpoint of economy (the investment of SG and the plant availability). The countermeasures to restrain failure propagation were investigated for a large-sized SG. Preliminary analysis revealed the possibility of minimizing tubes failure propagation by improving the leak detection system and the blow down system. Detailed failure propagation analysis will be required and the early water leak detection system and rapid blow down system must be evaluated to realize its performance. (2)In-service inspection (ISI&R). The viewpoint of the commercialized plant's ISI&R was organized by comparing with the prototype reactor's ISI&R method. We also investigated short-term ISI&R methods without sodium draining to prevent the degrading of the plant availability, however, it is difficult to realize them with the present technology. Hereafter, the ISI&R of the commercialized plants must be defined by considering its characteristics. (3)Sodium leak from the components. This report organized the basic countermeasure policy for primary and secondary sodium leak accidents. Double-wall structure of sodium piping was ...

JAEA Reports

None

Shimakawa, Yoshio; Nibe, Nobuaki; ; ; ; Uchita, Masato; Chikazawa, Yoshitaka

JNC TY9400 2002-007, 62 Pages, 2002/05

JNC-TY9400-2002-007.pdf:3.62MB

no abstracts in English

JAEA Reports

None

Shimakawa, Yoshio; Nibe, Nobuaki; ; ; ; Uchita, Masato; Chikazawa, Yoshitaka

JNC TY9400 2002-006, 94 Pages, 2002/05

JNC-TY9400-2002-006.pdf:4.66MB

no abstracts in English

Oral presentation

Preliminary studies for applicability related to the large reactor vessel of pool-type SFR, 1; Seismic evaluation

Uchita, Masato*; Dozaki, Koji*; Suzuno, Tetsuji*; Fukasawa, Tsuyoshi*; Hayafune, Hiroki; Kato, Atsushi

no journal, , 

Seismic evaluation on the reactor vessel of the pool type sodium-cooled reactor has been conducted using seismic conditions for domestic LWR sites. And parametric design survey when the reactor output is enlarged has also conducted showing available reactor vessel thickness with holizontal seismic isolation system and advanced design with three-dimensional seismic isolation system.

Oral presentation

Study for concepts of major components that constitute a loop-type SFR

Chikazawa, Yoshitaka; Kubo, Shigenobu; Hayafune, Hiroki; Shimakawa, Yoshio*; Uzawa, Masayuki*; Miyagawa, Takayuki*; Uchita, Masato*

no journal, , 

A loop-type sodium-cooled reactor which considers reduction of development load and utilization of international collaboration has been studied based on the next generation sodium-cooled reactor studied in the FaCT project.

Oral presentation

Study for concepts of major components that constitute a pool-type SFR

Miyagawa, Takayuki*; Uchita, Masato*; Shimakawa, Yoshio*; Uzawa, Masayuki*; Chikazawa, Yoshitaka; Kubo, Shigenobu; Hayafune, Hiroki

no journal, , 

To discuss fast reactor development utilizing France-Japan biralteral collaboration, a start point concept has to be developt. A pool type reactor concept based on ASTRID (French prototype reactor) to meet Japanese conditions have been investigated.

Oral presentation

3D CFD calculation for confirming an effect of structure to suppress gas entrainment from liquid surface of Sodium-cooled Fast Reactor

Nakamura, Hironori*; Uchita, Masato*; Hayakawa, Satoshi*; Matoba, Ichiyo*; Watanabe, Osamu*; Onoda, Yuichi; Tanaka, Masaaki

no journal, , 

no abstracts in English

25 (Records 1-20 displayed on this page)