Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 121

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Research and development on high burnup HTGR fuels in JAEA

Ueta, Shohei; Mizuta, Naoki; Sasaki, Koei; Sakaba, Nariaki; Ohashi, Hirofumi; Yan, X.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

JAEA has been progressing to design HTGR fuels for not only small-type practical HTGRs but also VHTR proposed in GIF which can be utilized for various purposes with high-temperature heat at 750 to 950 $$^{circ}$$C. To increase economy of these HTGRs, JAEA has been upgrading the design method for the HTGR fuel, which can maintain their integrities at the burnup of three to four times higher than that of the conventional HTTR fuel. Design principles and specifications of various concepts of the high burnup HTGR fuels designed by JAEA are reported. As the latest results on post-irradiation examinations of the high burnup HTGR fuel progressing in a framework of international collaboration with Kazakhstan, irradiation shrinkage rate of the fuel compact as a function of fast neutron fluence was obtained at around 100 GWd/thm. Furthermore, the future R&Ds needed for the high burnup HTGR fuel are described based on these experimental results.

Journal Articles

Study of SiC-matrix fuel element for HTGR

Mizuta, Naoki; Aoki, Takeshi; Ueta, Shohei; Ohashi, Hirofumi; Yan, X.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05

Enhancement of safety and cooling performance of fuel elements are desired for a commercial High Temperature Gas-cooled Reactor (HTGR). Applying sleeveless fuel elements and dual side directly cooling structures with oxidation resistant SiC-matrix fuel compact has a possibility of improving safety and cooling performance at the pin-in-block type HTGR. The irradiated effective thermal conductivity of a fuel compact is an important physical property for core thermal design of the pin-in-block type HTGR. In order to discuss the irradiated effective thermal conductivity of the SiC-matrix fuel compact which could improve the cooling performance of the reactor, the maximum fuel temperature during normal operation of the pin-in-block type HTGR with dual side directly cooling structures are analytically evaluated. From these results, the desired irradiated thermal conductivity of SiC matrix are discussed. In addition, the suitable fabrication method of SiC-matrix fuel compact is examined from viewpoints of the sintering temperature, the purity and the mass productivity.

Journal Articles

Development of fabrication technology for oxidation-resistant fuel elements for high-temperature gas-cooled reactors

Aihara, Jun; Honda, Masaki*; Ueta, Shohei; Ogawa, Hiroaki; Ohira, Koichi*; Tachibana, Yukio

Nippon Genshiryoku Gakkai Wabun Rombunshi, 18(1), p.29 - 36, 2019/03

Japan Atomic Energy Agency carried out development of fabrication technology of oxidation resistant fuel element for improvement of safety of high temperature gas-cooled reactors in serious oxidation accident, based on precursor research in former JAEA. Dummy coated fuel particles (alumina particles) were over-coated with mixed powder of Si, C and small amount of resin to form over-coated particles, and over-coated particles were molded and hot-pressed to sinter dummy oxidation resistant fuel elements with SiC/C mixed matrix. We fabricated dummy oxidation resistant fuel elements with matrix whose Si/C mole ratio (about 0.551) is three times as large as that in precursor research. Si peak was not detected by X-ray diffraction of matrix. Better oxidation resistant was confirmed with oxidation test in 20% O$$_{2}$$ at 1673 K than that of ordinal fuel compact with ordinal graphite/carbon matrix. All dummy coated fuel particles were held in specimen after 10 h oxidation.

Journal Articles

Development of security and safety fuel for Pu-burner HTGR; Test and characterization for ZrC coating

Ueta, Shohei; Aihara, Jun; Goto, Minoru; Tachibana, Yukio; Okamoto, Koji*

Mechanical Engineering Journal (Internet), 5(5), p.18-00084_1 - 18-00084_9, 2018/10

To develop the security and safety fuel (3S-TRISO fuel) for Pu-burner high temperature gas-cooled reactor (HTGR), R&D on zirconium carbide (ZrC) directly coated on yttria stabilized zirconia (YSZ) has been started in the Japanese fiscal year 2015. As results of the direct coating test of ZrC on the dummy YSZ particle, ZrC layers with 18 - 21 microns of thicknesses have been obtained with 0.1 kg of particle loading weight. No deterioration of YSZ exposed by source gases of ZrC bromide process was observed by Scanning Transmission Electron Microscope (STEM).

Journal Articles

Study on Pu-burner high temperature gas-cooled reactor in Japan; Introduction scenario

Fukaya, Yuji; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio; Okamoto, Koji*

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 9 Pages, 2018/10

The research on introduction scenarios of Pu-burner High Temperature Gas-cooled Reactor (HTGR) of Japan has been performed based on the "Long-term Energy Supply and Demand Outlook" released by the Ministry of Economy, Trade and Industry (METI) of Japan in 2015. In the perspective, the electricity generation capacity of nuclear power generation reduces from 50 GWe (peak around 2010) to 30 GWe in 2030. To maintain the capacity, light water reactors (LWRs) should be introduced from 2025 to 2030. After 2030, HTGRs, which are superior to LWRs from the viewpoint of safety and economy, will be introduced to fill the capacity and incinerate plutonium. We assumed introduction of U fueled HTGR as well. The Pu-burner reactor will be introduced with the priority to incinerate separated plutonium by reprocessing. Moreover, we also evaluated hydrogen generation and its effect on CO$$_{2}$$ reduction. As a result, effective plutonium incineration and CO$$_{2}$$ reduction effect are confirmed.

Journal Articles

Conceptual plant system design study of an experimental HTGR upgraded from HTTR

Ohashi, Hirofumi; Goto, Minoru; Ueta, Shohei; Sato, Hiroyuki; Fukaya, Yuji; Kasahara, Seiji; Sasaki, Koei; Mizuta, Naoki; Yan, X.; Aoki, Takeshi*

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 6 Pages, 2018/10

Conceptual design study of an experimental HTGR is performed to upgrade the plant system from Japanese High Temperature engineering Test Reactor (HTTR) to a commercial HTGR. Safety systems of HTTR are upgraded to demonstrate the commercial HTGR concept, such as a passive reactor cavity cooling system, a confinement, etc. An intermediate heat exchanger (IHX) is replaced by a steam generator (SG) for a process heat supply to demonstrate the technology for a commercial use. This paper describes the conceptual design study results of the plant system of the experimental HTGR.

Journal Articles

Study on Pu-burner high temperature gas-cooled reactor in Japan; Design study of fuel and reactor core

Goto, Minoru; Aihara, Jun; Inaba, Yoshitomo; Ueta, Shohei; Fukaya, Yuji; Okamoto, Koji*

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 6 Pages, 2018/10

JAEA has conducted design studies of a Pu-burner HTGR. The Pu-burner HTGR incinerates Pu by fission, and hence a high burn-up is required for the efficient incineration. In the fuel design, a thin ZrC layer, which acts as an oxygen getter and suppresses the internal pressure, was coated on the fuel kernel to prevent the CFP failure at the high burn-up. A stress analysis of the SiC layer, which acts as a pressure vessel for the CFP, was performed for with consideration of the depression effect due to the ZrC layer. As a result, the CFP failure fraction at high burn-up of 500 GWd/t satisfied the target value. In the reactor core design, an axial fuel shuffling was employed to attain the high burn-up, and the nuclear burn-up calculations with the whole core model and the fuel temperature calculations were performed. As a result, the nuclear characteristics, which are the shutdown margin and the temperature coefficient of reactivity, and the fuel temperature satisfied their target values.

Journal Articles

Study on Pu-burner high temperature gas-cooled reactor in Japan; Test and characterization for ZrC coating

Ueta, Shohei; Aihara, Jun; Mizuta, Naoki; Goto, Minoru; Fukaya, Yuji; Tachibana, Yukio; Okamoto, Koji*

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10

The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. Especially, a zirconium carbide (ZrC) coating is one of key technologies of the 3S-TRISO, which performs as an oxygen getter to reduce the fuel failure due to internal pressure during the irradiation. R&Ds on ZrC coating directly on the dummy CeO$$_{2}$$-YSZ kernel have been carried in the Japanese fiscal year 2017. As results of ZrC coating tests by the bromide chemical vapor deposition process, stoichiometric ZrC coatings with 3 - 18 microns of thicknesses were obtained with 0.1 kg of particle loading weight.

Journal Articles

Investigation of irradiated properties of extended burnup TRISO fuel

Shaimerdenov, A.*; Gizatulin, S.*; Kenzhin, Y.*; Dyussambayev, D.*; Ueta, Shohei; Aihara, Jun; Shibata, Taiju

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 6 Pages, 2018/10

The Institute of Nuclear Physics of the Republic of Kazakhstan (INP) conducts an irradiation test and post-irradiation examinations (PIEs) of the high-temperature gas-cooled reactor (HTGR) fuel and materials to develop the extend burnup fuel up to 100 GWd/t-U collaboratively with the Japan Atomic Energy Agency (JAEA) under projects in a frame of the International Science and Technology Centre (ISTC). Cylindrical fuel compact specimens consisting of newly-designed TRISO (tri-structural isotropic) coated fuel particles and a matrix made of graphite material were manufactured in Japan. An irradiation test of the fuel specimens using a helium-gas swept capsule designed and constructed in the INP has been performed up to 100 GWd/t-U in the WWR-K research reactor by April 2015. In the next stage, PIEs with the irradiated fuel specimens have been started in February 2017 as a new ISTC project. Several PIE technologies by non-destructive and destructive techniques with irradiated fuel compacts were developed by the INP. This report presents the developed technologies and interim results of the PIE for high burning TRISO fuel.

JAEA Reports

Excellent feature of Japanese HTGR technologies

Nishihara, Tetsuo; Yan, X.; Tachibana, Yukio; Shibata, Taiju; Ohashi, Hirofumi; Kubo, Shinji; Inaba, Yoshitomo; Nakagawa, Shigeaki; Goto, Minoru; Ueta, Shohei; et al.

JAEA-Technology 2018-004, 182 Pages, 2018/07

JAEA-Technology-2018-004.pdf:18.14MB

Research and development on High Temperature Gas-cooled Reactor (HTGR) in Japan started since late 1960s. Japan Atomic Energy Agency (JAEA) in cooperation with Japanese industries has researched and developed system design, fuel, graphite, metallic material, reactor engineering, high temperature components, high temperature irradiation and post irradiation test of fuel and graphite, high temperature heat application and so on. Construction of the first Japanese HTGR, High Temperature engineering Test Reactor (HTTR), started in 1990. HTTR achieved first criticality in 1998. After that, various test operations have been carried out to establish the Japanese HTGR technologies and to verify the inherent safety features of HTGR. This report presents several system design of HTGR, the world-highest-level Japanese HTGR technologies, JAEA's knowledge obtained from construction, operation and management of HTTR and heat application technologies for HTGR.

JAEA Reports

Comparison between HTFP code and minory changed FORNAX-A code

Aihara, Jun; Ueta, Shohei; Goto, Minoru; Inaba, Yoshitomo; Shibata, Taiju; Ohashi, Hirofumi

JAEA-Technology 2018-002, 70 Pages, 2018/06

JAEA-Technology-2018-002.pdf:1.46MB

HTFP code is code for calculation of additional release amount of fission product (FP) from fuel rod in high temperature gas-cooled reactor (HTGR) after stop of fission. Minory changed Fornax-A code also can calculate that. Therefore, release behavior of Cs calculated with HTFP code was compared with that calculated with minory modified FORNAX-A code in this report. Release constants of Cs evaluated with minory modified FORNAX-A code are rather different from default values for HTFP code.

Journal Articles

Development of security and safety fuel for Pu-burner HTGR, 2; Design study of fuel and reactor core

Goto, Minoru; Ueta, Shohei; Aihara, Jun; Inaba, Yoshitomo; Fukaya, Yuji; Tachibana, Yukio; Okamoto, Koji*

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 6 Pages, 2017/07

A PuO$$_{2}$$-YSZ fuel kernel with a ZrC coating, which enhances safety, security and safeguard, namely: 3S-TRISO fuel, was proposed to introduce to the plutonium-burner HTGR. In this study, the efficiency of the ZrC coating as the free-oxygen getter was examined based on a thermochemical calculation. A preliminary study on the feasibility of the 3S-TRISO fuel was conducted focusing on the internal pressure. Additionally, a nuclear feasibility of the reactor core was studied. As a result, all the amount of the free-oxygen is captured by a thin ZrC coating under 1600$$^{circ}$$C and coating ZrC on the fuel kernel should be very effective method to suppress the internal pressure. The internal pressure of the 3S-TRISO fuel at 500 GWd/t is lower than that of UO$$_{2}$$ kernel TRISO fuel whose feasibility had been already confirmed and the 3S-TRISO fuel should be feasible. The fuel shuffling allows to achieve 500 GWd/t. The temperature coefficient of reactivity is negative during the operation period and thus the nuclear feasibility of the reactor core should be achievable.

Journal Articles

Development of security and safety fuel for Pu-burner HTGR, 5; Test and characterization for ZrC coating

Ueta, Shohei; Aihara, Jun; Goto, Minoru; Tachibana, Yukio; Okamoto, Koji*

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 4 Pages, 2017/07

To develop the security and safety fuel (3S-TRISO fuel) for Pu-burner high temperature gas-cooled reactor (HTGR), R&D on zirconium carbide (ZrC) directly coated on yttria stabilized zirconia (YSZ) has been started in the Japanese fiscal year 2015. As results of the direct coating test of ZrC on the dummy YSZ particle, ZrC layers with 18 - 21 microns of thicknesses have been obtained with 0.1 kg of particle loading weight. No deterioration of YSZ exposed by source gases of ZrC bromide process was observed by Scanning Transmission Electron Microscope (STEM).

JAEA Reports

Confirmation of feasibility of fabrication technology and characterization of high-packing fraction fuel compact for HTGR

Mizuta, Naoki; Ueta, Shohei; Aihara, Jun; Shibata, Taiju

JAEA-Technology 2017-004, 22 Pages, 2017/03

JAEA-Technology-2017-004.pdf:2.71MB

Confirmation of feasibility of fabrication technology and characterization of the high-packing fraction fuel compact of High Temperature Gas Reactor (HTGR) fuel were carried out. Fuel compacts were fabricated with CFP packing fraction targeted at 33 percent by the same manufacturing condition of HTTR fuel compact. SiC-defective fraction, compressive strength and internal CFP distribution of the compact, important parameters to guarantee its integrity, were evaluated. The high-packing fuel compacts showed as same level of SiC-defective fraction as that of HTTR first loading fuel, 8$$times$$10$$^{-5}$$, and larger compressive strength than the HTTR fuel criteria, 4,900N. The feasibility of fabrication technology and the performance for the high-packing fraction fuel compact was confirmed.

Journal Articles

Nuclear thermal design of high temperature gas-cooled reactor with SiC/C mixed matrix fuel compacts

Aihara, Jun; Goto, Minoru; Inaba, Yoshitomo; Ueta, Shohei; Sumita, Junya; Tachibana, Yukio

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.814 - 822, 2016/11

Japan Atomic Energy Agency (JAEA) has started R&D for apply SiC/C mixed matrix to fuel element of high temperature gas-cooled reactors (HTGRs) to improve oxidation resistance of fuel. Nuclear thermal design of HTGR with SiC/C mixed matrix fuel compacts was carried out as a part of above R&Ds. Nuclear thermal design was carried out based on a small sized HTGR for developing countries, HTR50S. Maximum enrichment of uranium is set to be 10 wt%, because coated fuel particles with 10 wt% uranium have been fabricated in Japan. Numbers of kinds of enrichment and burnable poisons (BPs) were set to be same as those of original HTR50S (3 and 2, respectively). We succeeded in nuclear thermal design of a small sized HTGR which performance was equivalent to original HTR50S, with SiC/C mixed matrix fuel compacts. Based on nuclear thermal design, intactness of coated fuel particles was evaluated to be kept on internal pressure during normal operation.

Journal Articles

Irradiation test and post irradiation examination of the high burnup HTGR fuel

Ueta, Shohei; Aihara, Jun; Shaimerdenov, A.*; Dyussambayev, D.*; Gizatulin, S.*; Chakrov, P.*; Sakaba, Nariaki

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.246 - 252, 2016/11

In order to examine irradiation performance of the new Tri-structural Isotropic (TRISO) fuel for the High Temperature Gas-cooled Reactor (HTGR) at the burnup around 100 GWd/t, a capsule irradiation test was conducted by WWR-K research reactor in the Institute of Nuclear Physics (INP) of Kazakhstan. The irradiated TRISO fuel was designed by Japan Atomic Energy Agency (JAEA) and fabricated in basis of the HTTR fuel technology in Japan. The fractional release of fission gas from the fuel during the irradiation shows good agreement with the predicted one released from as-fabricated failed TRISO fuel. It was suggested that unexpected additional fuel failure would not occur during the irradiation up to 100 GWd/t. In addition, the post-irradiation examination (PIE) with the irradiated fuel is planned to qualify TRISO fuel integrity and upgrade HTGR fuel design for further burnup extension.

Journal Articles

Shielding technology for upper structure of HTTR

Ueta, Shohei; Sakaba, Nariaki; Sawa, Kazuhiro

Annals of Nuclear Energy, 94, p.72 - 79, 2016/08

 Percentile:100(Nuclear Science & Technology)

In the shielding design for the High Temperature Gas-cooled Reactor (HTGR), special attentions shall be needed to avoid neutron streaming, since helium gas as a coolant does not work for shielding. Japan Atomic Energy Agency has demonstrated the performance of shielding through testing operations of the High Temperature Engineering Test Reactor (HTTR) in order to establish design method for shielding of the Very-High-Temperature Reactor (VHTR) as a Generation-IV nuclear power system. As results of the test, it was confirmed that dose equivalent rates for neutron and $$gamma$$-ray at on-operating acceptable areas were less than detection limit and as low as background, respectively. The measured dose at the stand-pipe room corresponded to the detection limit, and it was found that over 90% of dose derived from fast neutron. It was indicated that there was still a margin of factor 50 in addition to the design which excluded the safety factor. The measured dose rates showed good agreement with the predicted considering the control rod withdrawing effect. The knowledge on the design method and the demonstration of shielding by the HTTR will strongly contribute to realizing and optimizing the designs of future VHTRs.

JAEA Reports

Proceedings of 7th KAERI-JAEA Information Exchange Meeting on HTGR and Nuclear Hydrogen Technology; November 5th-6th, 2015, JAEA Oarai Research and Development Center, Oarai, Japan

Inaba, Yoshitomo; Lee, T.*; Ueta, Shohei; Kasahara, Seiji; Honda, Yuki; Lee, H.*; Kim, E.*; Cho, M.*; Bae, K.*; Sakaba, Nariaki

JAEA-Review 2015-043, 96 Pages, 2016/03

JAEA-Review-2015-043.pdf:79.27MB

The information exchange meeting on HTGR and hydrogen production technology between Korea Atomic Energy research Institute (KAERI) and Japan Atomic Energy Agency (JAEA) was held in the Oarai Research and Development Center of JAEA on November 5th - 6th, 2015 based on the cooperative research program of the KAERI-JAEA implementation of "Development of HTGR and Nuclear Hydrogen Technology" under "The Implementation of Cooperative Program in the Field of Peaceful Uses of Nuclear Energy between KAERI and JAEA." In order to facilitate efficient technology development on the HTGR and nuclear hydrogen by the IS process, both sides mutually showed the present status and future plan of the research and development on the HTGR and nuclear hydrogen technology, respectively. This proceeding summarizes all materials of the presented technical discussions on the HTGR and hydrogen production technology based on the open documents as well as the meeting briefing including collaboration items.

JAEA Reports

Application of FORNAX-A

Aihara, Jun; Ueta, Shohei; Nishihara, Tetsuo

JAEA-Technology 2015-040, 32 Pages, 2016/02

JAEA-Technology-2015-040.pdf:0.83MB

Original FORNAX-A is a calculation code for amount of fission product (FP) released from fuel rods of pin-in-type high temperature gas-cooled reactors (HTGRs). This report is for explanation what calculations become possible with minor changed FORNAX-A.

Journal Articles

Conceptual study of a plutonium burner high temperature gas-cooled reactor with high nuclear proliferation resistance

Goto, Minoru; Demachi, Kazuyuki*; Ueta, Shohei; Nakano, Masaaki*; Honda, Masaki*; Tachibana, Yukio; Inaba, Yoshitomo; Aihara, Jun; Fukaya, Yuji; Tsuji, Nobumasa*; et al.

Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.507 - 513, 2015/09

A concept of a plutonium burner HTGR named as Clean Burn, which has a high nuclear proliferation resistance, had been proposed by Japan Atomic Energy Agency. In addition to the high nuclear proliferation resistance, in order to enhance the safety, we propose to introduce PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating to the Clean Burn. In this study, we conduct fabrication tests aiming to establish the basic technologies for fabrication of PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating. Additionally, we conduct a quantitative evaluation of the security for the safety, a design of the fuel and the reactor core, and a safety evaluation for the Clean Burn to confirm the feasibility. This study is conducted by The University of Tokyo, Japan Atomic Energy Agency, Fuji Electric Co., Ltd., and Nuclear Fuel Industries, Ltd. It was started in FY2014 and will be completed in FY2017, and the first year of the implementation was on schedule.

121 (Records 1-20 displayed on this page)