検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound

高木 里奈*; 松山 直文*; Ukleev, V.*; Yu, L.*; White, J. S.*; Francoual, S.*; Mardegan, J. R. L.*; 速水 賢*; 齋藤 開*; 金子 耕士; et al.

Nature Communications (Internet), 13, p.1472_1 - 1472_7, 2022/03

 被引用回数:55 パーセンタイル:99.61(Multidisciplinary Sciences)

Magnetic skyrmions are topologically stable swirling spin textures with particle-like character, and have been intensively studied as a candidate of high-density information bit. While magnetic skyrmions were originally discovered in noncentrosymmetric systems, recently a nanometric skyrmion lattice has also been reported for centrosymmetric rare-earth compounds. For the latter systems, a novel skyrmion formation mechanism mediated by itinerant electrons has been proposed, and the search of a simpler model system allowing for a better understanding of their intricate magnetic phase diagram is highly demanded. Here, we report the discovery of square and rhombic lattices of nanometric skyrmions in a centrosymmetric binary compound EuAl$$_4$$, by performing small-angle neutron and resonant elastic X-ray scattering experiments. Unlike previously reported centrosymmetric skyrmion-hosting materials, EuAl$$_4$$ shows multiple-step reorientation of the fundamental magnetic modulation vector as a function of magnetic field, probably reflecting a delicate balance of associated itinerant-electron-mediated interactions. The present results demonstrate that a variety of distinctive skyrmion orders can be derived even in a simple centrosymmetric binary compound, which highlights rare-earth intermetallic systems as a promising platform to realize/control the competition of multiple topological magnetic phases in a single material.

論文

Emergence of spin-orbit coupled ferromagnetic surface state derived from Zak phase in a nonmagnetic insulator FeSi

大塚 悠介*; 金澤 直也*; 平山 元昭*; 松井 彬*; 野本 拓也*; 有田 亮太郎*; 中島 多朗*; 花島 隆泰*; Ukleev, V.*; 青木 裕之; et al.

Science Advances (Internet), 7(47), p.eabj0498_1 - eabj0498_9, 2021/11

 被引用回数:7 パーセンタイル:40.96(Multidisciplinary Sciences)

FeSi is a nonmagnetic narrow-gap insulator, exhibiting peculiar charge and spin dynamics beyond a simple band structure picture. Those unusual features have been attracting renewed attention from topological aspects. Although the surface conduction was demonstrated according to size-dependent resistivity in bulk crystals, its topological characteristics and consequent electromagnetic responses remain elusive. Here, we demonstrate an inherent surface ferromagnetic-metal state of FeSi thin films and its strong spin-orbit coupling (SOC) properties through multiple characterizations of two-dimensional conductance, magnetization, and spintronic functionality. Terminated covalent bonding orbitals constitute the polar surface state with momentum-dependent spin textures due to Rashba-type spin splitting, as corroborated by unidirectional magnetoresistance measurements and first-principles calculations. As a consequence of the spin-momentum locking, nonequilibrium spin accumulation causes magnetization switching. These surface properties are closely related to the Zak phase of the bulk band topology. Our findings propose another route to explore noble metal-free materials for SOC-based spin manipulation.

2 件中 1件目~2件目を表示
  • 1