Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ouchi, Satoshi; Kurumada, Osamu; Kamiishi, Eigo; Sato, Masayuki; Ikekame, Yoshinori; Wada, Shigeru
JAEA-Technology 2016-015, 42 Pages, 2016/06
The purpose of the control rod drive mechanism seating position detector for JRR-3 is one of a method for confirming the shutdown condition of the reactor. The detector has been utilizing more than 25 years with maintenance regularly. However, it is occurred some trouble recently. Moreover, the detector has already been end of manufacture, and even in the successor detector, it unsuitable for the control rod drive mechanism of JRR-3 was confirmed. Therefore, it was necessary to select the adequate detector to the control rod drive mechanism of JRR-3. Accordingly, we built a test device with the aim of verify several detectors for integrity and function. At the time of the test for performance confirmation, it was occurred unexpected problems. Nevertheless, we devise improvement of the problems and took measures. Thus we were able to collect adequate detector for JRR-3 and replace to enhanced detector. This paper reports the Enhanced of Control rod drive mechanism seat position detector.
Kurumada, Osamu; Ikekame, Yoshinori; Ouchi, Satoshi; Sato, Masayuki; Kamiishi, Eigo; Wada, Shigeru
JAEA-Technology 2015-056, 35 Pages, 2016/03
The power supply for reactor control rod magnet of JRR-3 has been utilized for generating electromagnetic power of control rod coil and that was using more than 25 years. The power supply was required for provide to stabilize DC current. Therefore, we adopted series regulator method. Although, the power supply generate a high heat. Then, we decided to create switching regulator method in order to improve the aging and heat generation of the series regulator method. This paper reports the replacement of switching regulator method.
Kobayashi, Takayuki; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Ikeda, Ryosuke; Oda, Yasuhisa; Wada, Kenji; Hinata, Jun; Yokokura, Kenji; Hoshino, Katsumichi; et al.
Proceedings of 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015) (USB Flash Drive), 3 Pages, 2015/08
A gyrotron for electron cyclotron heating and current drive (ECH/CD) has been developed for JT-60SA (Super-Advanced). In high-power, long-pulse operations, oscillations of 1 MW/100 s have been demonstrated at both 110 GHz and 138 GHz, for the first time. These results fully satisfied the requirements for JT-60SA. Moreover, it was experimentally shown that the higher power operation at each frequency is expected to be acceptable for this gyrotron from the viewpoint of heat load at the cavity resonator, collector, and stray radiation absorbers. An oscillation at 82 GHz, which is an additional frequency, has been demonstrated up to 2 s at the output power of 0.4 MW, so far. High power experiments toward higher power of 1.5 MW (110/138 GHz) and 1 MW (82 GHz) are ongoing.
Kobayashi, Takayuki; Moriyama, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Hoshino, Katsumichi; et al.
Nuclear Fusion, 55(6), p.063008_1 - 063008_8, 2015/06
Times Cited Count:26 Percentile:75.86(Physics, Fluids & Plasmas)A gyrotron enabling high-power, long-pulse oscillations at both 110 GHz and 138 GHz has been developed for electron cyclotron heating (ECH) and current drive (CD) in JT-60SA. Oscillations of 1 MW for 100 s have been demonstrated at both frequencies, for the first time as a gyrotron operating at two frequencies. The optimization of the anode voltage, or the electron pitch factor, using a triode gun was a key to obtain high power and high efficiency at two frequencies. It was also confirmed that the internal losses in the gyrotron were sufficiently low for expected long pulse operation at the higher power level of 1.5 MW. Another important result is that an oscillation at 82 GHz, which enables to use fundamental harmonic waves in JT-60SA while the other two frequencies are used as second harmonics waves, was demonstrated up to 0.4 MW for 2 s. These results of the gyrotron development significantly contribute to enhancing operation regime of the ECH/CD system in JT-60SA.
Kobayashi, Takayuki; Moriyama, Shinichi; Isayama, Akihiko; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Yokokura, Kenji; et al.
EPJ Web of Conferences, 87, p.04008_1 - 04008_5, 2015/03
Times Cited Count:5 Percentile:82.84(Physics, Fluids & Plasmas)A dual-frequency gyrotron, which can generate 110 GHz and 138 GHz waves independently, is being developed in JAEA to enable electron cyclotron heating (ECH) and current drive (ECCD) in a wider range of plasma discharge conditions of JT-60SA. Operation for the gyrotron conditioning and parameter optimization toward 1 MW for 100 s, which is the target output power and pulse length for JT-60SA, is in progress without problems. Oscillations of 1 MW for 10 s and 0.51 MW for 198 s were obtained, so far, at both frequencies. In addition, an oscillation (0.3 MW for 20 ms) at 82 GHz was demonstrated as an additional frequency of the dual-frequency gyrotron which shows a possibility of the use of fundamental harmonic wave in JT-60SA.
Yokokura, Kenji; Moriyama, Shinichi; Kobayashi, Takayuki; Hiranai, Shinichi; Sawahata, Masayuki; Terakado, Masayuki; Hinata, Jun; Wada, Kenji; Sato, Yoshikatsu; Hoshino, Katsumichi; et al.
JAEA-Technology 2014-002, 64 Pages, 2014/03
A new instrument has been developed to measure spatial distribution of power density and total power of the millimeter wave, by measuring temperature rise of dielectric material inserted in the waveguide. For a measurement, a dielectric disk with thermally insulated support is inserted into the few millimeters gap in the waveguide. The disk is heated by the millimeter wave pulse for 0.10.2 s, and immediately after the pulse, it is pulled up and its temperature distribution is measured by an infrared camera to estimate the spatial power density distribution of the millimeter wave. In the other hand, total transmission power is estimated by the disk temperature reached equilibrium. In the measurement test, deformation of the power density distribution was successfully detected when the mirror angle was intentionally changed in the matching optics unit (MOU) at the waveguide input from the gyrotron. The test result shows that the instrument is effective for both adjustment of MOU without opening the vacuum boundary and to detect any abnormal transmission during operation of the ECH system. The test also shows high reliability of the instrument which stands with 1 MW high power transmission without any arcing or pressure rise in vacuum region. The instrument will be contributed to keep good condition of high power long pulse ECH system by detecting abnormal transmission in the waveguide in operation without open vacuum boundary.
Ishibashi, Masayuki; Onoe, Hironori; Sawada, Atsushi; Atsumi, Hiroyuki*; Masumoto, Kazuhiko*; Hosoya, Shinichi*
Dai-42-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.101 - 106, 2014/01
Japan Atomic Energy Agency is proceeding with the Mizunami Underground Research Laboratory Project in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock for geological disposal of high level radioactive wastes. We have carried out discrete fracture network modeling, groundwater flow and particle tracking simulation in order to understand the important factors for the solute transport characterizations. In this paper, a method of discrete fracture network modeling based on in-situ data at underground gallery and the influences of different data interpretation are described.
Nakajima, Makoto*; Seno, Shoji*; Onoe, Hironori; Ishibashi, Masayuki; Saegusa, Hiromitsu; Sawada, Atsushi
Dai-42-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.107 - 112, 2014/01
Japan Atomic Energy Agency is proceeding with the Mizunami Underground Research Laboratory Project in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock for geological disposal of high level radioactive wastes. We have carried out discrete fracture network modeling, groundwater flow and particle tracking simulation in order to understand the important factors for the solute transport characterizations. In this paper, a method for estimating hydraulic parameter of discrete fracture network model based on in-situ data at underground gallery are described.
Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Hoshino, Katsumichi; Suzuki, Sadaaki; Hiranai, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hinata, Jun; et al.
Fusion Engineering and Design, 88(6-8), p.935 - 939, 2013/10
Times Cited Count:4 Percentile:31.43(Nuclear Science & Technology)An antenna having a first mirror driven in the linear motion (LM) and a fixed second mirror was proposed for electron cyclotron range of frequency (ECRF) heating and current drive system, to minimize the risk of cooling-water-leakage. Basic mechanical feasibilities of the bellows covering the movable structures of the antenna were previously investigated using a mock-up. This time, a support structure of the shaft has been designed using a metallic sliding bearing with solid lubricant. The sliding bearing can support combination of linear and rotational motions while a ball bearing supports either linear or rotational motion. We have newly installed the sliding bearing into the mock-up. A vacuum pumping test has been carried out paying attention to the influence of the solid lubricant by mass analysis. To design the LM antenna for JT-60SA in detail, heating and current drive characteristics for typical experimental scenarios of JT-60SA has been investigated by calculation.
Kobayashi, Takayuki; Isayama, Akihiko; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Yokokura, Kenji; et al.
Fusion Science and Technology, 63(1T), p.160 - 163, 2013/05
Times Cited Count:7 Percentile:47.83(Nuclear Science & Technology)A dual frequency electron cyclotron range of frequency system has been developed for JT-60SA, by which a second frequency (135 140 GHz) is generated in addition to the first frequency of 110 GHz. A development of a dual frequency gyrotron is a key to realize the dual frequency system. The second frequency was chosen to be 138 GHz from the above frequency range from the viewpoint of gyrotron design. In order to realize high-power ( 1 MW) and long-pulse operation for both frequencies, we designed main components of the gyrotron (the diamond window, cavity resonator and quasi-optical mode converter). We found the optimum parameter set from the parameters of these components, which has discrete characteristics. It was confirmed that the output power higher than 1 MW is obtained for both frequencies as a result of numerical design. Based on the above design, a dual frequency gyrotron was newly fabricated. In the conditioning operation, an output power was obtained as we expected.
Kobayashi, Takayuki; Isayama, Akihiko; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Yokokura, Kenji; et al.
Proceedings of 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012) (USB Flash Drive), 2 Pages, 2012/09
A new dual frequency (110 GHz and 138 GHz) gyrotron development began for JT-60SA. An output power and efficiency higher than 1 MW and 30% with a peak heat load lower than 1.4 kW/cm were obtained for both frequencies in calculation. High mode conversion efficiencies of the quasioptical mode converter (96.8% for 110 GHz and 98.3% for 138 GHz), which is higher than the previously developed 110 GHz long pulse gyrotron (96.5%), was obtained. The new gyrotron was fabricated and conditioning operation has been started from the middle of June 2012. The gyrotron output power of approximately 200 kW was obtained, so far, as we expected in the design of the gyrotron at low beam current of 10 A and low beam voltage of 75 kV.
Isayama, Akihiko; Kobayashi, Takayuki; Yokokura, Kenji; Shimono, Mitsugu; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Hinata, Jun; et al.
Plasma and Fusion Research (Internet), 7(Sp.1), p.2405029_1 - 2405029_5, 2012/05
no abstracts in English
Shinohara, Masanori; Yanagi, Shunki; Tochio, Daisuke; Shimazaki, Yosuke; Nojiri, Naoki; Owada, Hiroyuki; Sato, Nao; Sagawa, Hiroshi; Umeda, Masayuki
JAEA-Technology 2011-029, 39 Pages, 2011/12
JAEA plans and performs the safety demonstration test using the HTTR to develop High Temperature Gas Reactor technologies. Cold test of the loss of forced cooling was conducted prior to the safety demonstration test, to check test procedure and plant behavior. Cold test consists of two phases, Phase1, 1 or 2 Vessel Cooling System (VCS) terminates, in the Phase2, all 3 Gas circulators and 1 VCS terminates. Cold test could confirm test process, and obtain data necessary to analysis and 2-dimensional horizontal sectional model analysis was verified to simulate actual measurement value.
Kobayashi, Takayuki; Isayama, Akihiko; Hasegawa, Koichi; Suzuki, Sadaaki; Hiranai, Shinichi; Sato, Fumiaki; Wada, Kenji; Yokokura, Kenji; Shimono, Mitsugu; Sawahata, Masayuki; et al.
Fusion Engineering and Design, 86(6-8), p.763 - 767, 2011/10
Times Cited Count:6 Percentile:43.25(Nuclear Science & Technology)Progress of antenna development of the Electron Cyclotron Range of Frequency system for JT-60 SA is presented. Capability of pulse length of 100 s, which requires active cooling for mirrors, and flexibility of beam injection angles in both poloidal and toroidal directions are required for the antenna with high reliability. Mechanical and structural design works of the launcher (antenna and its support with steering structure) based on a linear motion antenna concept are in progress. The key component is a long-stroke bellows which enables to alter poloidal injection angle and a bellows which enables to alter toroidal injection angle. Using a newly fabricated mock-up of the steering structure, it was confirmed that the antenna was mechanically realized for poloidal and toroidal injection angle ranges of -10 to +45 and -15 to +15, respectively. Those angles are consistent with angles required in JT-60SA. The results of thermal and structural analyses are also presented.
Konno, Chikara; Wada, Masayuki*; Kondo, Keitaro; Onishi, Seiki; Takakura, Kosuke; Ochiai, Kentaro; Sato, Satoshi
Fusion Engineering and Design, 86(9-11), p.2682 - 2685, 2011/10
Times Cited Count:4 Percentile:31.74(Nuclear Science & Technology)JENDL-4, the major revised version of Japanese Evaluated Nuclear Data Library (JENDL), was released in spring, 2010. We analyzed the fusion neutronics benchmark experiments on iron at JAEA/FNS with JENDL-4.0 and MCNP4C as the detail benchmark test of JENDL-4.0 iron data. As a result, it is found out that the problems of iron data in JENDL-3.3 are adequately revised in JENDL-4.0 iron data; e.g. the first inelastic scattering cross section data of Fe and angular distribution of elastic scattering of Fe. The iron data in JENDL-4.0 are comparable to and are partly better than those in ENDF/B-VII.0 and JEFF-3.1.
Kobayashi, Takayuki; Isayama, Akihiko; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Sato, Fumiaki; et al.
Nuclear Fusion, 51(10), p.103037_1 - 103037_10, 2011/10
Times Cited Count:19 Percentile:61.36(Physics, Fluids & Plasmas)A new gyrotron operation technique to increase oscillation efficiency was developed on the JT 60 ECRF system. The electron pitch factor was optimized by controlling anode voltage within 0.1 s after the start of the operation. By applying this technique, the gyrotron output power of 1.5 MW for 4 s was recorded, for the first time. The reduced collector heat load at 1.5 MW operations was reduced by 20% and it will be acceptable for longer pulse operation. A new gyrotron with an improved mode converter was developed in order to demonstrate reduction of the stray radiation which had limited the pulse length. The stray radiation was reduced to 1/3 of that of the original gyrotron. A conditioning operation of the improved gyrotron is proceeding up to 31 s at 1 MW. These progresses significantly contribute to enhancing the high power and long pulse capability of the ECRF system toward JT 60SA.
Konno, Chikara; Takakura, Kosuke; Wada, Masayuki*; Kondo, Keitaro; Onishi, Seiki*; Ochiai, Kentaro; Sato, Satoshi
Progress in Nuclear Science and Technology (Internet), 2, p.346 - 357, 2011/10
The major revised version of Japanese Evaluated Nuclear Data Library (JENDL), JENDL-4, was released in 2010 spring. As the benchmark test of JENDL-4.0 in the shielding and fusion neutronics fields, we analyzed many integral benchmark experiments (in-situ and Time-of-Flight (TOF) experiments) with DT neutrons at JAEA/FNS with the MCNP code and JENDL-4.0. The experiments with assemblies including beryllium, carbon, silicon, vanadium, copper, tungsten and lead, nuclear data of which were revised in JENDL-4.0, were selected for this benchmark test. As a result, it is found that JENDL-4 improved some problems pointed out in JENDL-3.3 and that it is comparable to ENDF/B-VII.0 and JEFF-3.1.
Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke; Onishi, Seiki; Kondo, Keitaro; Wada, Masayuki*; Sato, Satoshi
Fusion Engineering and Design, 85(10-12), p.2054 - 2058, 2010/12
Times Cited Count:2 Percentile:16.89(Nuclear Science & Technology)In the last ISFNT, we presented re-analyses of fusion neutronics benchmark experiments on beryllium at JAEA/FNS and reported that all the calculations with JENDL-3.3, FENDL-2.1, JEFF-3.1 and ENDF/B-VII.0 overestimated experimental data on low energy neutrons and that the calculation with JEFF-3.1 had a strange peak around 12 MeV. Here we investigate reasons for these problems. As a result, It was found out that the official ACE file MCJEFF3.1 of JEFF-3.1 had an inconsistency with the original JEFF-3.1, which caused the strange larger neutron peak around 12 MeV. We also find out that the calculated thermal neutron peak is probably too large. It is indicated that the coherent elastic scattering cross section data in the thermal neutron flux law data of beryllium metal are too large.
Kobayashi, Takayuki; Isayama, Akihiko; Fasel, D.*; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; et al.
Journal of Plasma and Fusion Research SERIES, Vol.9, p.363 - 368, 2010/08
Improvements are required for expanding the pulse length of the JT-60 ECRF system (5s) for JT-60SA (100s). Newly developed power supplies will be fabricated and installed by EU. The conditioning operation of an improved gyrotron equipping a newly designed mode convertor has been started. The mode convertor will reduce heat flux on the internal components and therefore expected to enable long pulse operation at 1 MW. Pre-programmed and/or feedback control of the heater current and anode voltage, which was successfully demonstrated in JT-60U, will be key techniques because the beam current decreases during a shot. The evacuated transmission lines have a capability of 1 MW per line. Since maintenance of the components in the vacuum vessel is difficult, a linear motion antenna concept was proposed to reduce risks of water leakage and fault of the driving mechanism in the vacuum vessel. The detailed design and the low power test of a mock-up antenna have been started.
Konno, Chikara; Sato, Satoshi; Ochiai, Kentaro; Wada, Masayuki*; Onishi, Seiki; Takakura, Kosuke; Iida, Hiromasa
Nuclear Technology, 168(3), p.743 - 746, 2009/12
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The three-dimensional Sn code Attila of Transpire, Inc. can use CAD data as a geometrical input directly and deal with assemblies of complicated geometry without much effort. ITER organization has a plan to adopt this code as one of the standard codes for nuclear analyses. However validation of calculations with this code is not carried out in detail so far. Thus we validate this code through analyses of some bulk experiments and streaming experiments with DT neutrons at JAEA/FNS. Analyses with the Sn code system DOORS and Monte Carlo code MCNP4C were also carried out for comparison. Agreement between Attila and DOORS calculations is very good for the bulk experiments. For streaming experiments Attila requires special treatments (biased angular quadrature sets or last collided source calculation) as well as DOORS in order to obtain similar results as those with MCNP, though Attila consumes much more time and memory than DOORS.