Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tashiro, Shinsuke; Ono, Takuya; Amano, Yuki; Yoshida, Ryoichiro; Watanabe, Koji*; Abe, Hitoshi
Nuclear Technology, 208(10), p.1553 - 1561, 2022/10
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)To contribute to the confinement safety evaluation of the radioactive materials in the Glove box (GB) fire accident, combustion tests with the Polymethyl methacrylate (PMMA) and the Polycarbonate (PC) as typical panel materials for the GB have been conducted with a relatively large scale apparatus. As the important data for evaluating confinement safety, the release ratio and the particle size distribution of the soot generated from the burned materials were obtained. Furthermore, the rise of the differential pressure (P) of the high efficiency particle air (HEPA) filter by the soot loading was also investigated. As results, the release ratio of the soot from the PC was about seven times as large as the PMMA. In addition, it was found that the behavior of the rise of the
P with soot loading could be represented uniformly regardless of kinds of combustion materials by considering effect of the loading volume of the soot particle in the relatively low loading region.
Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Kono, Takahiko; Hosomi, Kenji; Nishimura, Shusaku; Matsubara, Natsumi; Maehara, Yushi; Narita, Ryosuke; et al.
JAEA-Review 2019-048, 165 Pages, 2020/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2018 to March 2019. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.
Kokubu, Yoko; Fujita, Natsuko; Miyake, Masayasu; Watanabe, Takahiro; Ishizaka, Chika; Okabe, Nobuaki; Ishimaru, Tsuneari; Matsubara, Akihiro*; Nishizawa, Akimitsu*; Nishio, Tomohiro*; et al.
Nuclear Instruments and Methods in Physics Research B, 456, p.271 - 275, 2019/10
Times Cited Count:2 Percentile:26.4(Instruments & Instrumentation)JAEA-AMS-TONO has been in operation at the Tono Geoscience Center, Japan Atomic Energy Agency since 1998 and 20 years have passed from the beginning of its utilization. The AMS system is a versatile system based on a 5 MV tandem Pelletron type accelerator. The system has been used to measure carbon-14 (C), beryllium-10 (
Be) and aluminium-26 (
Al). In addition, the development of measurement of iodine-129 (
I) has been started. The main use is measurement of
C in geological samples for dating studies in neotectonics and hydrogeology. In order to increase the speed of sample preparation, we introduced the automated graphitization equipment and made a gas-strip line to collect dissolved inorganic carbon in groundwater samples. Measurement of
Be and
Al has been used for geoscience studies and the detection limit in the measurement of
Be was improved by
Be-counting suppression. Recently tuning of measurement condition of
I has been progressed.
Onuki, Toshihiko; Sakamoto, Fuminori; Kozai, Naofumi; Namba, Kenji*; Neda, Hitoshi*; Sasaki, Yoshito; Niizato, Tadafumi; Watanabe, Naoko*; Kozaki, Tamotsu*
Environmental Science; Processes & Impacts, 21(7), p.1164 - 1173, 2019/07
Times Cited Count:10 Percentile:51.33(Chemistry, Analytical)The fate of radioactive Cs deposited after the Fukushima nuclear power plant accident and its associated radiological impacts are largely dependent on its mobility from surface soils to forest ecosystems. We measured the accumulation of radioactive Cs in the fruit bodies of wild fungi in the forest at Iidate, Fukushima, Japan. The transfer factors (TFs) of radioactive Cs from soil to the fruit bodies of wild fungi were between 10 to 10
, a range similar to those reported for the fruit bodies collected in Europe after the Chernobyl accident and in parts of Japan contaminated by nuclear bomb test fallout. Comparison of the TFs of the wild mushroom and that of the fungal hyphae of 704 stock strains grown on agar medium containing nutrients and radioactive Cs showed that the TFs of wild mushroom were lower. TF was less than 0.1 after addition of the minerals zeolite, vermiculite, phlogopite, smectite, or illite of 1% weight to the agar medium. These results indicate that the presence of minerals decrease Cs uptake by fungi grown in the agar medium.
Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Kono, Takahiko; Hosomi, Kenji; Hokama, Tomonori; Nishimura, Tomohiro; Matsubara, Natsumi; et al.
JAEA-Review 2018-025, 171 Pages, 2019/02
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.
Watanabe, Takahiro; Kokubu, Yoko; Fujita, Natsuko; Ishizaka, Chika*; Nishio, Tomohiro; Matsubara, Akihiro*; Miyake, Masayasu; Kato, Motohisa*; Isozaki, Nobuhiro*; Torazawa, Hitoshi*; et al.
JAEA-Conf 2018-002, p.116 - 119, 2019/02
AMS is widely used for radiocarbon dating of geological samples. However, improvement in efficiency of sample preparation techniques are needed for high-time resolution dataset. In 2016, automated graphitization equipment (AGE3, IonPlus AG) has been installed in Toki Research Institute of Isotope Geology and Geochronology, Tono Geoscience Center, JAEA. Background values and carbon recovery rates during preparation process of AGE3 should be estimated before application in radiocarbon dating. In this study, the AGE3 system was evaluated using the international standard materials (IAEA-C1, C4, C5, C6, C7, C9 and NIST-SRM4990C) at JAEA-AMS-TONO. Graphite samples was prepared by the AGE3 system and radiocarbon concentration of these standards was measured by AMS. The results were agreement with the consensus values. Background values were 0.150.01 pMC (IAEA-C1) using the AGE3 system. Therefore, we concluded that the system can be adapted for radiocarbon dating of geological samples.
Kokubu, Yoko; Fujita, Natsuko; Matsubara, Akihiro*; Nishizawa, Akimitsu*; Nishio, Tomohiro; Miyake, Masayasu; Ishimaru, Tsuneari; Watanabe, Takahiro; Ogata, Nobuhisa; Shimada, Akiomi; et al.
JAEA-Conf 2018-002, p.5 - 8, 2019/02
no abstracts in English
Fujita, Natsuko; Miyake, Masayasu; Watanabe, Takahiro; Kokubu, Yoko; Ishimaru, Tsuneari; Matsubara, Akihiro*; Nishio, Tomohiro*; Kato, Motohisa*; Isozaki, Nobuhiro*; Torazawa, Hitoshi*; et al.
JAEA-Conf 2018-013, p.96 - 99, 2019/02
no abstracts in English
Fujita, Natsuko; Miyake, Masayasu; Watanabe, Takahiro; Kokubu, Yoko; Matsubara, Akihiro*; Kato, Motohisa*; Okabe, Nobuaki; Isozaki, Nobuhiro*; Ishizaka, Chika*; Torazawa, Hitoshi*; et al.
Dai-31-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.92 - 95, 2018/12
no abstracts in English
Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Nishimura, Tomohiro; Koike, Yuko; et al.
JAEA-Review 2017-028, 177 Pages, 2018/01
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.
Ono, Takuya; Watanabe, Koji; Tashiro, Shinsuke; Amano, Yuki; Abe, Hitoshi
Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 7 Pages, 2017/07
After the Fukushima-Daiichi accident, countermeasures against the severe accident are newly required as regulatory items for nuclear facilities. Organic solvent fire in cell was defined as one of the accidents in the fuel reprocessing plant. When the solvent burns, aerosols including soot are released. The substances clog HEPA filters in the ventilation system and their breakthrough may happen because of differential pressure rising. Moreover, the fire can also release volatile radioactive gaseous species, which can pass through HEPA filters. These phenomena are important for evaluation of confinement capability of the facility and public exposure. We have investigated, in relating to the clogging behavior, release behavior of aerosols as well as of volatile materials from burnt solvent. In the presentation, we will report experimental data and evaluation results obtained from recent research.
Fujita, Natsuko; Miyake, Masayasu; Watanabe, Takahiro; Kokubu, Yoko; Ishimaru, Tsuneari; Matsubara, Akihiro*; Isozaki, Nobuhiro*; Nishio, Tomohiro*; Kato, Motohisa*; Torazawa, Hitoshi*; et al.
Dai-19-Kai AMS Shimpojiumu, 2016-Nendo "Jumoku Nenrin" Kenkyukai Kyodo Kaisai Shimpojiumu Hokokushu, p.68 - 71, 2017/06
no abstracts in English
Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; Matsubara, Natsumi; Maehara, Yushi; et al.
JAEA-Review 2016-035, 179 Pages, 2017/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2015 to March 2016. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.
Shimaoka, Takehiro*; Kaneko, Junichi*; Sato, Yuki; Tsubota, Masakatsu*; Shimmyo, Hiroaki*; Chayahara, Akiyoshi*; Watanabe, Hideyuki*; Umezawa, Hitoshi*; Mokuno, Yoshiaki*
Physica Status Solidi (A), 213(10), p.2629 - 2633, 2016/10
Times Cited Count:7 Percentile:36.13(Materials Science, Multidisciplinary)Amano, Yuki; Watanabe, Koji; Masaki, Tomoo; Tashiro, Shinsuke; Abe, Hitoshi
JAEA-Technology 2016-012, 21 Pages, 2016/06
To contribute to safety evaluation of fire accident in fuel reprocessing plants, solvent extraction behavior of ruthenium, which could form volatile species, was investigated. Distribution ratios of ruthenium at fire accident conditions were obtained by extraction experiments with several solvent composition at different temperature as parameters. In order to investigate release behavior of ruthenium and europium at fire accident, release ratios of ruthenium and europium were also obtained by solvent combustion experiments.
Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Takeyasu, Masanori; Mizutani, Tomoko; Isozaki, Tokuju*; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; et al.
JAEA-Review 2015-034, 175 Pages, 2016/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2014 to March 2015. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co. in March 2011.
Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Inoue, Kazumi; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.
JAEA-Review 2015-030, 115 Pages, 2015/12
Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2014. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Nagaoka, Mika; Yokoyama, Hiroya; Matsubara, Natsumi; Fujita, Hiroki; Nakano, Masanao; Watanabe, Hitoshi
KEK Proceedings 2015-4, p.214 - 218, 2015/11
The radiological impact of the radionuclides released from the Fukushima Daiichi Nuclear Power Station to the sea offshore of Ibaraki has been studied in this research. Fifty-one seabed sediments were collected in 2012, 2013 and 2014, respectively. Then, all samples were measured for the activities of Cs and
Cs and some samples were analyzed for the activities of
Sr. The results indicated that the activities of
Cs and
Cs were elevated by the accident and showed a decreasing tendency between 2012 and 2014. The tendency of activity in Kuji Riverestuary area was different from Ibaraki coast area. The difference could be caused by geological feature and grain size of seabed sediment etc. On the other hand,
Sr activities were ND-0.26 Bq/kg dry. It was no correlation between
Sr and
Cs activity. The
Sr activity released by the accident was small influence on seabed sediment collected around sea offshore of Ibaraki.
Amano, Yuki; Watanabe, Koji; Tashiro, Shinsuke; Yamane, Yuichi; Ishikawa, Jun; Yoshida, Kazuo; Uchiyama, Gunzo; Abe, Hitoshi
Nihon Genshiryoku Gakkai Wabun Rombunshi, 14(2), p.86 - 94, 2015/06
Radioactive materials could be released into air due to the accidental boiling of high active liquid waste (HALW) in reprocessing plants. Volatile radioactive nuclides, such as ruthenium, are released from the tanks into the atmosphere. Nitrogen oxides (NOx) are also released due to the thermal decomposition of metal nitrates in HALW. The released NOx transport volatile ruthenium and cause redox reactions associated with the composition or decomposition of volatile ruthenium. In this study, NOx release data were obtained by heating simulated HALW up to 600C. As a result, the release of NOx from the simulated HALW was observed from 200
C to 600
C, and the main release of NOx was observed at about 340
C. All the lanthanide nitrates were found to decompose in the simulated HALW, and the thermal decomposition temperature of the lanthanide nitrates decreased after the addition of ruthenium dioxide to the mixed lanthanide nitrates solution.
Tomizawa, Hiromitsu*; Sato, Takahiro*; Ogawa, Kanade*; Togawa, Kazuaki*; Tanaka, Takatsugu*; Hara, Toru*; Yabashi, Makina*; Tanaka, Hitoshi*; Ishikawa, Tetsuya*; Togashi, Tadashi*; et al.
High Power Laser Science and Engineering, 3, p.e14_1 - e14_10, 2015/04
Times Cited Count:6 Percentile:36.13(Optics)no abstracts in English