Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Arai, Yoichi; Watanabe, So; Nakahara, Masaumi; Funakoshi, Tomomasa; Hoshino, Takanori; Takahatake, Yoko; Sakamoto, Atsushi; Aihara, Haruka; Hasegawa, Kenta; Yoshida, Toshiki; et al.
Progress in Nuclear Science and Technology (Internet), 7, p.168 - 174, 2025/05
The Japan Atomic Energy Agency (JAEA) has been conducting a project named "Systematic Treatment of RAdioactive liquid waste for Decommissioning (STRAD)" project since 2018 for fundamental and practical studies for treating radioactive liquid wastes with complicated compositions. Fundamental studies have been conducted using genuine liquid wastes accumulated in a hot laboratory of the JAEA called the Chemical Processing Facility (CPF), and treatment procedures for all liquid wastes in CPF were successfully designed on the results obtained. As the next phase of the project, new fundamental and practical studies on primarily organic liquid wastes accumulated in different facilities of JAEA are in progress. This paper reviews the representative achievements of the STRAD project and introduces an overview of ongoing studies.
Watanabe, Tomoaki; Tada, Kenichi; Endo, Tomohiro*; Yamamoto, Akio*
Journal of Nuclear Science and Technology, 16 Pages, 2025/04
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)This study investigated the impact of nuclear data updates from JENDL-4.0 (J4) to JENDL-5 (J5) on the light-water reactor fuel burnup calculations. Burnup calculations were conducted with J4 and J5 for PWR pin-cell and BWR fuel assembly geometries. The calculation results revealed significant burnup-dependent differences in the neutron multiplication factor (k). Across the burnup range of 0-50 GWd/t, k
values of J5 were consistently smaller than those of J4 and the difference gradually increased as burnup progressed. Direct sensitivity calculations, in which each nuclide data was replaced from J4 to J5, indicated that updates to the cross-sections of
U,
U, and
Pu and the thermal scattering law data of H in H
O notably impacted the k
differences. For the BWR assembly geometry containing Gd fuels, large k
differences were observed in the burnup range of 10-15 GWd/t. This difference was primarily attributed to updates in the
U,
Gd, and
Gd cross-sections, and thermal scattering law data of H in H
O. Furthermore, we investigated how the nuclear data updates affected the k
differences by examining nuclide number densities, the energy-dependent sensitivities, and the neutron spectra.
Watanabe, Tomoaki; Aizawa, Naoto*; Chiba, Go*; Tada, Kenichi; Yamamoto, Akio*
Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025) (Internet), 10 Pages, 2025/04
Currently, a major burnup calculation method for the nuclide composition of nuclear fuel conducts neutron transport calculations at each burnup step to account for changes in the neutron spectrum. While this method is highly accurate, the large computational cost of neutron transport calculations can be problematic. Therefore, a fast burnup calculation method based on neutron spectrum reconstruction with the proper orthogonal decomposition (POD) and regression model is investigated. In this method, dimensionality reduction by POD is applied to many neutron fluxes obtained from detailed burnup calculations for various input parameter sets, and regression models are constructed to connect the dimensionality-reduced neutron fluxes and parameters. By substituting arbitrary input parameters to the regression models, the neutron flux is reconstructed and the burnup calculation is performed. This method performs burnup calculations that consider changes in the neutron spectrum based on input conditions without neutron transport calculations. The present method was applied to a PWR UO fuel pin cell model. The results show the nuclide inventory can be calculated with a prediction accuracy within a few percent. In addition, it is found that the calculation error is dominated by the regression models, which implies the further improvement of the regression models leads to improving the accuracy.
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Jinno, Satoshi; Watanabe, Takahiro; Nishio, Tomohiro*; Ogawa, Yumi; Omae, Akiomi*; Kimura, Kenji; et al.
Dai-36-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.90 - 92, 2025/03
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Watanabe, Kaho; Suzuki, Kenta
JAEA-Testing 2024-004, 41 Pages, 2025/02
There is an emergency response team against nuclear facilities' accidents of Japan Atomic Energy Agency (JAEA). The team is in Naraha Center for Remote Control Technology Development (NARREC). Trainings of maneuvering emergency response robots are performed at NARREC by the team for operators temporarily coming from all facilities which are possibility to have a huge nuclear emergency in JAEA. There are three kinds of robots to be used in the training: (1) Reconnaissance robots (for shooting a video and for measuring radiation level and temperature in nuclear accidents field), (2) Work robots (for obstacles removal in nuclear accidents field) and (3) Drones. As for the training, each operator person has been trained once or twice a year. Therefore, it is difficult for operators to retain their own sense of the maneuvering robots. Then, the team provided a simulator system which is consists of a palm-sized controller and a PC installed operation programs based on Choreonoid as dynamics simulation software, and we provided the system for operators in order to supplement a real robot operation training. This report shows the operation method of the provided simulator system regarding one reconnaissance robot and two work robots.
Sugiyama, Hitoshi*; Kato, Kenichi*; Sekine, Naoko*; Sekine, Yurina; Watanabe, Tomoaki*; Fukazawa, Tomoko*
Chemical Physics Letters, 856, p.141655_1 - 141655_8, 2024/12
Times Cited Count:2 Percentile:37.13(Chemistry, Physical)To investigate the effects of polymer hydrophilicity on structures of water in hydrogels, differential scanning calorimetry and X-ray diffraction measurements were performed. The results show that the amount of intermediate water in polyacrylamide (PAA) hydrogel is about 12% smaller than that in poly--dimethylacrylamide (PDMAA) hydrogel. Furthermore, it was found that the bound water in PAA hydrogel primarily exists around the surface of the polymer bundles, whereas that in PDMAA hydrogel acts as a crosslinker factor for dehydration and water absorption in hydrogels.
Ishikawa, Akihisa; Tanaka, Hiroki*; Nakamura, Satoshi*; Kumada, Hiroaki*; Sakurai, Yoshinori*; Watanabe, Kenichi*; Yoshihashi, Sachiko*; Tanagami, Yuki*; Uritani, Akira*; Kiyanagi, Yoshiaki*
Journal of Radiation Research (Internet), 65(6), p.765 - 775, 2024/11
Times Cited Count:0 Percentile:0.00(Biology)Watanabe, Tomoaki; Suyama, Kenya; Tada, Kenichi; Ferrer, R. M.*; Hykes, J.*; Wemple, C. A.*
Nuclear Science and Engineering, 198(11), p.2230 - 2239, 2024/11
Times Cited Count:1 Percentile:51.66(Nuclear Science & Technology)A new nuclear data library for the advanced lattice physics code CASMO5 has been prepared based on JENDL-5. In JENDL-5, many essential nuclides for conventional LWR analysis have also been modified based on state-of-the-art evaluations. The new JENDL-5-based CASMO5 library was prepared by replacing as much of the nuclear data of the current CASMO5 ENDF/B-VII.1-based library as possible with JENDL-5. This study verified and validated the new library. Verifications were performed based on the OECD/NEA burnup credit criticality safety benchmark phase III-C, and the calculated k and fuel compositions of the BWR fuel assembly were compared with reported benchmark results. Comparison with the MCNP6.2 result was also performed using the same benchmark model. In addition, the TCA critical experiment and Takahama-3 post-irradiation experiment were used for validation. The results indicate that the new library performs well and is comparable to the ENDF/B-VII.1-based library in predictions of reactivity and fuel compositions for LWR systems.
Oikawa, Kenichi; Matsumoto, Yoshihiro*; Watanabe, Kenichi*; Sato, Hirotaka*; Parker, J. D.*; Shinohara, Takenao; Kiyanagi, Yoshiaki*
Scientific Reports (Internet), 14, p.27990_1 - 27990_11, 2024/11
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)Matsumoto, Yoshihiro*; Oikawa, Kenichi; Watanabe, Kenichi*; Sato, Hirotaka*; Parker, J. D.*; Shinohara, Takenao; Kiyanagi, Yoshiaki*
Journal of Archaeological Science; Reports, 58, p.104729_1 - 104729_10, 2024/10
Watanabe, Kenichi*; Sugai, Yusuke*; Hasegawa, Sota*; Tanaka, Seishiro*; Hitomi, Keitaro*; Nogami, Mitsuhiro*; Shinohara, Takenao; Su, Y. H.; Parker, J. D.*; Kockelmann, W.*
Scientific Reports (Internet), 14, p.25224_1 - 25224_13, 2024/10
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)Arai, Yoichi; Watanabe, So; Watanabe, Masayuki; Arai, Tsuyoshi*; Katsuki, Kenta*; Agou, Tomohiro*; Fujikawa, Hisaharu*; Takeda, Keisuke*; Fukumoto, Hiroki*; Hoshina, Hiroyuki*; et al.
Nuclear Instruments and Methods in Physics Research B, 554, p.165448_1 - 165448_10, 2024/09
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Suyama, Kenya; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai; Shimada, Kazuya; Fujita, Tatsuya; Ueki, Taro; Nguyen, H.
JAEA-Conf 2024-001, 40 Pages, 2024/07
The 12th International Conference on Nuclear Criticality Safety (ICNC2023) was held from October 1 to October 6, 2023, at the Sendai International Center (Aobayama, Aoba-ku, Sendai, Miyagi-prefecture 980-0856, Japan), organized by Japan Atomic Energy Agency (JAEA) and co-organized by the Reactor Physics Division of the Atomic Energy Society of Japan (AESJ) and the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (OECD/NEA). 224 presentations passed peer review and 273 technical session registrations, bringing the total number of registered participants to 289, including accompanying persons. Technical tours were also conducted to i) Fukushima Daiichi Nuclear Power Station of TEPCO holdings and Interim Storage Facility Information Center, ii) Nuclear Science Research Institute of JAEA (STACY Renewable Reactor and FCA), iii) NanoTerasu of Tohoku University (synchrotron radiation facility) and Onagawa Nuclear Power Station of Tohoku Electric Power Co., Inc. This report summarizes the conference and compiles the papers that were presented and agreed to be published in the Proceedings.
Arai, Yoichi; Hasegawa, Kenta; Watanabe, So; Watanabe, Masayuki; Minowa, Kazuki*; Matsuura, Haruaki*; Hagura, Naoto*; Katsuki, Kenta*; Arai, Tsuyoshi*; Konishi, Yasuhiro*
Journal of Radioanalytical and Nuclear Chemistry, 333(7), p.3585 - 3593, 2024/07
Times Cited Count:1 Percentile:23.64(Chemistry, Analytical)Nemoto, Takahiro; Fujiwara, Yusuke; Arakawa, Ryoki; Choyama, Yuya; Nagasumi, Satoru; Hasegawa, Toshinari; Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Kawamoto, Taiki; et al.
JAEA-Technology 2024-003, 17 Pages, 2024/06
In order to investigate the cause of the increase in differential pressure in the primary helium circulator filter that occurred during the RS-14 cycle, a clogged filter was investigated. As a result of the investigation, deposits caused by silicone oil were confirmed on the surface of the filter element. These results revealed that the cause of filter clogging was silicone oil mixed into the primary system due to performance deterioration of the charcoal filter in the gas circulator of primary helium purification system. As a measure to prevent the recurrence of this event, in addition to the conventional management based on operating hours for replacing of charcoal filter in the gas circulator of primary helium purification system, we have established a new replacement plan for every three years.
Ichikawa, Tsubasa*; Hakoshima, Hideaki*; Inui, Koji*; Ito, Kosuke*; Matsuda, Ryo*; Mitarai, Kosuke*; Miyamoto, Koichi*; Mizukami, Wataru*; Mizuta, Kaoru*; Mori, Toshio*; et al.
Nature Reviews Physics (Internet), 6(6), p.345 - 347, 2024/06
Times Cited Count:8 Percentile:99.15(Physics, Applied)Watanabe, Kenichi*; Oshima, Yuya*; Shigyo, Nobuhiro*; Hirata, Yuho
Japanese Journal of Applied Physics, 63(5), p.056001_1 - 056001_5, 2024/05
Times Cited Count:0 Percentile:0.00(Physics, Applied)Lithium-containing scintillators are used for neutron detection; Li-containing scintillators detect tritons and alpha rays produced by neutrons. Since these particles deposit higher energy than gamma rays, Li-containing scintillators can separate gamma rays and neutrons. However, the luminescence efficiency of scintillator decreases for ion beams due to a phenomenon called the quenching effect. Evaluation of the quenching effect is necessary to accurately separate neutrons and gamma rays. The Birks equation is used to predict the scintillation efficiency change due to the quenching effect, but it is necessary to determine the quenching coefficient in the Birks equation. In this study, we used PHITS to calculate the luminescence of Li-containing scintillators considering the quenching effect based on Birks' equation with the quenching coefficient as a free parameter. Then, by comparing the simulated results with the experimentally obtained luminescence, the extinction coefficients of Li glass, Ce:LiCaAlF, and Eu:LiCaAlF
scintillators were determined.
Yuguchi, Takashi*; Kato, Takenori*; Ogita, Yasuhiro; Watanabe, Minori*; Yamazaki, Hayato*; Kato, Asuka*; Ito, Daichi*; Yokoyama, Tatsunori; Sakata, Shuhei*; Ono, Takeshi*
Journal of Asian Earth Sciences, 265, p.106091_1 - 106091_13, 2024/04
Times Cited Count:2 Percentile:36.99(Geosciences, Multidisciplinary)Hasegawa, Kenta; Goto, Ichiro*; Miyazaki, Yasunori; Ambai, Hiromu; Watanabe, So; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki
Mechanical Engineering Journal (Internet), 11(2), p.23-00407_1 - 23-00407_8, 2024/04
Watanabe, So; Takahatake, Yoko; Hasegawa, Kenta; Goto, Ichiro*; Miyazaki, Yasunori; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki
Mechanical Engineering Journal (Internet), 11(2), p.23-00461_1 - 23-00461_10, 2024/04