Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Study of groundwater sampling casing for monitoring device

Okihara, Mistunobu*; Yahagi, Ryoji*; Iwatsuki, Teruki; Takeuchi, Ryuji; Murakami, Hiroaki

JAEA-Technology 2019-021, 77 Pages, 2020/03

JAEA-Technology-2019-021.pdf:5.33MB

One of the major subjects of the ongoing geoscientific research program, the Mizunami Underground Research Laboratory (MIU) Project in the Tono area, central Japan, is accumulation of knowledge on monitoring techniques of the geological environment. In this report, the conceptual design of the monitoring system for groundwater pressure and water chemistry was carried out. The currently installed and used system in research galleries at various depths was re-designed to make it possible to collect groundwater and observe the water pressure on the ground.

JAEA Reports

Planning for in-situ backfilling test to the gallery in the Mizunami Underground Research Laboratory

Toguri, Satohito*; Yahagi, Ryoji*; Okihara, Mistunobu*; Takeuchi, Nobumitsu*; Kurosaki, Hiromi*; Matsui, Hiroya

JAEA-Technology 2018-017, 161 Pages, 2019/03

JAEA-Technology-2018-017.pdf:28.26MB

The Japan Atomic Energy Agency has been conducting research on three critical issues for development of: engineering techniques for underground construction, modelling techniques of mass transfer and tunnel backfilling methods at the Mizunami Underground Research Laboratory on the basis of Medium to Long-Term Plan of Japan Atomic Energy Agency. This report describes the overall plan of in-situ test to backfill a part of Mizunami Underground Research Laboratory, which is planned for "development of tunnel backfilling method".

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015); Development of design and construction planning and countermeasure technologies (Contract research)

Toguri, Satohito*; Kobayashi, Shinji*; Tsuji, Masakuni*; Yahagi, Ryoji*; Yamada, Toshiko*; Matsui, Hiroya; Sato, Toshinori; Mikake, Shinichiro; Aoyagi, Yoshiaki

JAEA-Technology 2017-005, 43 Pages, 2017/03

JAEA-Technology-2017-005.pdf:4.4MB

The study on engineering technology in the Mizunami Underground Research Laboratory (MIU) project roughly consists of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security, and (5) development of technologies regarding restoration and mitigating of the excavation effect. In FY2015, as a part of the important issues on the research program, water-tight grouting method has been developed. Grouting methods utilized in the MIU were evaluated and the post-excavation grouting at the -500m Access/Research Gallery-South was planned based on these evaluation results. Also, technology development from the viewpoint of geological disposal was summarized, and information on the alternative method to the grouting method was collected and organized.

Journal Articles

Excavation cycle times recorded during sinking of a deep shaft in crystalline rock; A Case example at ventilation shaft of Mizunami URL, Japan

Sanada, Hiroyuki; Sato, Toshinori; Horiuchi, Yasuharu*; Mikake, Shinichiro; Okihara, Mistunobu*; Yahagi, Ryoji*; Kobayashi, Shinji*

Tunnelling and Underground Space Technology, 50, p.68 - 78, 2015/08

 Times Cited Count:3 Percentile:75.02(Construction & Building Technology)

The Japan Atomic Energy Agency (JAEA) is implementing the Mizunami Underground Research Laboratory (MIU) Project to establish the scientific and technological basis for the geological disposal of High-level Radioactive Waste (HLW) in crystalline rocks. Excavation cycle times were recorded during the Ventilation Shaft sinking and compared with the planned excavation cycle times for evaluation of the baseline design plan. This included review of the cycle times in the design process and comparison with the actual construction results. The recorded results indicate that actual cycle times were twice as long as the design plan. This paper describes discussions on differences in cycle times between the design and actual times.

Journal Articles

Analysis of excavation cycle time during sinking of the ventilation shaft at the Mizunami Underground Research Laboratory

Sanada, Hiroyuki; Sato, Toshinori; Horiuchi, Yasuharu*; Mikake, Shinichiro; Okihara, Mistunobu*; Yahagi, Ryoji*; Kobayashi, Shinji*

Proceedings of 8th Asian Rock Mechanics Symposium (ARMS-8) (USB Flash Drive), 7 Pages, 2014/10

The Japan Atomic Energy Agency (JAEA) is implementing the Mizunami Underground Research Laboratory (MIU) Project to establish the scientific and technological basis for the geological disposal of High-level Radioactive Waste (HLW) in crystalline rocks. Excavation cycle times were recorded during the Ventilation Shaft sinking and compared with the planned excavation cycle times for evaluation of the baseline design plan. This included review of the cycle times in the design process and comparison with the actual construction results. The recorded results indicate that actual cycle times were twice as long as the design plan. This paper describes discussions on differences in cycle times between the design and result.

Oral presentation

Current status and future tasks of countermeasures for reducing water inflow at Mizunami Underground Laboratory

Kusano, Takashi*; Tamura, Hideyuki*; Yahagi, Ryoji*; Ushida, Kazuhito*; Nobuto, Jun*; Kuroda, Hidetaka; Hara, Masato; Takeuchi, Shinji; Matsui, Hiroya; Yamamoto, Masaru; et al.

no journal, , 

no abstracts in English

Oral presentation

Pre-grouting to reduce water inflow in the ventilation shaft into the Mizunami Underground Research Laboratory

Hara, Masato; Kinoshita, Harunobu; Ikeda, Koki; Yamamoto, Masaru; Yahagi, Ryoji*; Kikuchi, Shinji*; Kawano, Hiromichi*; Ushida, Kazuhito*; Nobuto, Jun*; Minamide, Masashi*

no journal, , 

At the Mizunami Underground Research Laboratory, inflow water control to inside the tunnel has become topic. Because of this, the pre-grouting at inside the tunnnel of depth 200m was executed. In this report, it is something which is reported concerning the result of the pre-grouting.

Oral presentation

In-tunnel spraying test of the low-alkaline super shotcrete, 4; In-tunnel constructibility verification test

Murokawa, Takamitsu*; Ito, Kazuyuki*; Yahagi, Ryoji*; Kumasaka, Hiroo*; Eguchi, Keita*; Ukai, Takaki*; Yamawaki, Hiroyuki; Sato, Toshinori

no journal, , 

no abstracts in English

Oral presentation

Planning for in-situ backfilling test to the gallery in the Mizunami Underground Research Laboratory

Matsui, Hiroya; Yahagi, Ryoji*; Okihara, Mistunobu*; Toguri, Satohito*

no journal, , 

This report describes the overall plan of in-situ test to backfill a part of Mizunami Underground Research Laboratory, which is planned for development of tunnel backfilling method.

Oral presentation

In-situ experiment for the backfilling in a small scale drift by spray method, 1; Selection of the material and machines

Yahagi, Ryoji*; Ishizuka, Hikaru*; Toguri, Satohito*; Matsui, Hiroya

no journal, , 

This repot summarize about the selection of the material and machines for in-situ experiment for the backfilling in a small scale drift by spray method funded by METI.

Oral presentation

In-situ experiment for the backfilling in a small scale drift by spray method, 2; The Results of in-situ experiment in MIU

Ishizuka, Hikaru*; Yahagi, Ryoji*; Toguri, Satohito*; Matsui, Hiroya

no journal, , 

This repot summarize about the results of the in-situ experiment for the backfilling in MIU by spray method funded by METI.

11 (Records 1-11 displayed on this page)
  • 1