Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 48

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Results of 1-MW operation in J-PARC 3 GeV rapid cycling synchrotron, 2

Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Nakanoya, Takamitsu; Hatakeyama, Shuichiro; Yoshimoto, Masahiro; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.277 - 281, 2023/01

The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. We tried to operate continuously for over 40 hours in June 2020. However, some trouble occurred and the operation was frequently suspended. In June 2021, we tried again 1-MW operation but it was suspended due to deterioration of the cooling water performance. Last summer shutdown period, we recovered performance of the cooling water system and retried in this June. In the final case, the outside temperature became extremely high. We could not keep 1-MW power, whereas 600 kW beam was delivered in stable.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:5 Percentile:87.42(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

JAEA Reports

Report of the design examination and the installation work for the radiation shield at the beam injection area in the 3 GeV synchrotron

Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami

JAEA-Technology 2021-019, 105 Pages, 2021/11

JAEA-Technology-2021-019.pdf:10.25MB

Since a user operation startup, the 3 GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS, such as the magnet, vacuum chambers, beam monitors, etc., increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have organized a task force for the installation of the shield. The task force has aimed to optimize the structure of the radiation shield, construct the installation procedure with due consideration of the worker's dose suppression. As the examination result of the shield design, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The renewal work required to install the shielding has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area. It was a large-scale work to occupy the beam injection area during almost of the summer maintenance period. However, it is considered very meaningful for dose suppression in future maintenance works.

Journal Articles

Radiation shielding installation for beam injection section of 3GeV synchrotron

Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.238 - 242, 2021/10

Since a user operation startup, the 3GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The installation work of the shield has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area.

Journal Articles

Improved vacuum system for high-power proton beam operation of the rapid cycling synchrotron

Kamiya, Junichiro; Kotoku, Hirofumi*; Kurosawa, Shunta*; Takano, Kazuhiro; Yanagibashi, Toru*; Yamamoto, Kazami; Wada, Kaoru

Physical Review Accelerators and Beams (Internet), 24(8), p.083201_1 - 083201_23, 2021/08

 Times Cited Count:0 Percentile:0.02(Physics, Nuclear)

Through the operation of the vacuum system in J-PARC, it becomes evident that the high-power beam has more powerful effects on the vacuum system than expected. Those effects are the malfunction of vacuum equipment and the large pressure rise. The former is the failure of the turbomolecular pump (TMP) controller. The TMP itself is also damaged by a bearing crush due to a touch-down. We have developed a TMP controller that can connect with long cables of more than 200 m lengths to install the controller in a control room where there is no radiation influence. The TMP with high-strength bearing has been also developed. The latter is an extreme pressure rise with increasing the beam power. It is indicated that the pressure rise mechanism is a result of ion-stimulated gas desorption. It is finally confirmed that the dynamic pressure during the high-power beam is effectually suppressed by additionally installing the NEG pumps.

Journal Articles

Recent status & improvements of the RCS vacuum system

Kamiya, Junichiro; Kotoku, Hirofumi; Hikichi, Yusuke*; Takahashi, Hiroki; Yamamoto, Kazami; Kinsho, Michikazu; Wada, Kaoru*

JPS Conference Proceedings (Internet), 33, p.011023_1 - 011023_6, 2021/03

The vacuum system is the key for the stable high power beam operation in J-PARC 3 GeV rapid cycling synchrotron (RCS), because the gas molecules in the beam line make the beam loss due to the scattering. The more than 10 years operation of the RCS vacuum system showed that the ultra-high vacuum (UHV) has been stably maintained by the several developments. The challenges for lower beam line pressure will exist in a future operation with higher beam power. For such challenge, a TMP with a rotor of titanium alloy, which have much higher mechanical strength than aluminum allow for the normal rotter, has been developed. Overcoming the difficulties of the machining performance of the titanium alloy rotor was successfully manufactured. We will report the summary of the 10 years operation of the RCS vacuum system and the incoming developments towards the XHV.

Journal Articles

Results of 1-MW operation in J-PARC 3 GeV rapid cycling synchrotron

Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Hatakeyama, Shuichiro; Hotchi, Hideaki; Yoshimoto, Masahiro; et al.

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.209 - 213, 2020/09

The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, just before the summer shutdown period, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. First trial was 1-hour continuous operation in July 2018, and second trial was 10-hours continuous in July 2019. In both cases, we achieved almost stable operation. Furthermore, in June 2020, we tried to operate continuously for over 40 hours. But in this case, some trouble occurred and the operation was frequently suspended. Through these continuous operation trials, we have identified issues for stable operation of 1 MW. In this presentation, we will report the results of 1-MW continuous operation and issues obtained from these results.

Journal Articles

New design of vacuum chambers for radiation shield installation at beam injection area of J-PARC RCS

Kamiya, Junichiro; Kotoku, Hirofumi; Shobuda, Yoshihiro; Takayanagi, Tomohiro; Yamamoto, Kazami; Yanagibashi, Toru*; Horino, Koki*; Miki, Nobuharu*

Journal of Physics; Conference Series, 1350, p.012172_1 - 012172_7, 2019/12

 Times Cited Count:0 Percentile:0.06(Physics, Particles & Fields)

One of the issues in the J-PARC 3 GeV rapid cycling synchrotron is the high residual radiation dose around the beam injection point. A radiation shield is necessary to reduce radiation exposure of workers when maintenance is performed there. A space to install the radiation shield should be secured by newly designing a structure of the vacuum chamber at the injection point and the alumina ceramics beam pipes for the shift bump magnets. To make the space for the shield, the chamber is lengthened along the beam line and the cross-sectional shape is changed from circle to rectangle. The displacement and inner stress of the vacuum chamber due to atmospheric pressure were evaluated to be enough small by the calculation. For the ceramics beam pipe's rf-shield, the damping resistor was effective to reduce the induced modulation voltages by the pulsed magnetic field.

Journal Articles

Operation status of J-PARC rapid cycling synchrotron

Yamamoto, Kazami; Kamiya, Junichiro

Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2020 - 2023, 2019/06

The 3 GeV rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex (J-PARC) provides more than 500 kW beams to the Material and Life Science Experimental Facility and Main Ring synchrotron. In such a high-intensity hadron accelerator, even losing less than 0.1% of the beam can cause many problems. Such lost protons can cause serious radio-activation and accelerator component malfunctions. Therefore, we have conducted a beam study to achieve high-power operation with less loss. In addition, we have also maintained the accelerator components to enable stable operation. This paper reports the status of the J-PARC RCS over the last Japan fiscal year.

Journal Articles

Activation in injection area of J-PARC 3-GeV rapid cycling synchrotron and its countermeasures

Yamamoto, Kazami; Yamakawa, Emi*; Takayanagi, Tomohiro; Miki, Nobuharu*; Kamiya, Junichiro; Saha, P. K.; Yoshimoto, Masahiro; Yanagibashi, Toru*; Horino, Koki*; Nakanoya, Takamitsu; et al.

ANS RPSD 2018; 20th Topical Meeting of the Radiation Protection and Shielding Division of ANS (CD-ROM), 9 Pages, 2018/08

The existing beam power of the J-PARC Rapid Cycling Synchrotron is up to 500 kW, and higher radiation doses are concentrated in the injection area. These activations are caused by the interaction between the foil and the beam. To reduce dose exposure to workers near the injection point, we study a new design of the injection scheme. Experience has shown that eddy currents are generated in the metal flange near the magnet owing to the pulsed magnetic field, and the temperature exceeds 100 degrees C. The shield installed in the new injection system needs to have a layer structure, in which an insulator is inserted between iron shields to reduce the eddy current. From the results of the shielding calculation, even if 1 mm of polyethylene was inserted between two 9-mm-thick SUS 316 plates, which serve as shielding material, the shielding performance was reduced only about 5%, and we confirmed that it would function well.

Journal Articles

Upgrade of vacuum chamber at RCS beam injection area aimed at lower radiation and maintainability increase

Kamiya, Junichiro; Yamamoto, Kazami; Yanagibashi, Toru*; Sato, Atsushi*; Miki, Nobuharu*

Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.645 - 648, 2018/08

Surround of the beam injection point in the J-PARC 3 GeV Rapid Cycling Synchrotron is the area where the residual radioactive dose is higher than other areas due to the beam scattering by the charge stripping foil. However, there is very little space to install radiation shields around the vacuum chamber in the beam injection point. Furthermore, the vacuum leak has often occurred due to the heat expansion of the chamber flange due to the induced current by the nearby pulse magnet. To solve such problems for minimizing the radiation exposure of maintenance workers, the vacuum chamber rin the beam injection point was newly designed. The space for the radiation shields was created by lengthening and the changing the cross-sectional shape. The titanium alloy with high mechanical strength was used for the flange material so that the flange was able to be fastened with higher tightening torque.

Journal Articles

A New pulse magnet for the RCS injection shift bump magnet at J-PARC

Takayanagi, Tomohiro; Yamamoto, Kazami; Kamiya, Junichiro; Saha, P. K.; Ueno, Tomoaki*; Horino, Koki*; Kinsho, Michikazu; Irie, Yoshiro*

IEEE Transactions on Applied Superconductivity, 28(3), p.4100505_1 - 4100505_5, 2018/04

 Times Cited Count:4 Percentile:25.6(Engineering, Electrical & Electronic)

Journal Articles

New injection system design of the J-PARC rapid cycling synchrotron

Yamamoto, Kazami; Kamiya, Junichiro; Saha, P. K.; Takayanagi, Tomohiro; Yoshimoto, Masahiro; Hotchi, Hideaki; Harada, Hiroyuki; Takeda, Osamu*; Miki, Nobuharu*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.374 - 378, 2017/12

The 3-GeV Rapid Cycling Synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) aims to deliver 1-MW proton beam to the neutron target and Main Ring synchrotron. Present beam power of the Rapid Cycling Synchrotron is up to 500-kW and the higher radiation doses were concentrated in the injection area. These activations were caused by the interaction between the foil and the beam. To reduce the worker dose near the injection point, we have studied a new design of the injection scheme to secure enough space for radiation shielding and bellows. In the new system, two of four injection pulse bump magnets are replaced and we are able to ensure the additional space around the injection foil chamber. So far, new injection system seems not impossible. However, preliminary study result indicated that temperature of the duct and shielding metals would be slightly higher. The eddy current due to the shift bump magnet field generates heat. Thus we have to study details of above effect.

Journal Articles

Development of a gas-sheet target for a non-destructive profile monitor

Ogiwara, Norio; Hikichi, Yusuke*; Kamiya, Junichiro; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.563 - 567, 2017/12

Journal Articles

A Failure investigation of the beam collimator system in the J-PARC 3 GeV rapid cycling synchrotron

Okabe, Kota; Yamamoto, Kazami; Kamiya, Junichiro; Takayanagi, Tomohiro; Yamamoto, Masanobu; Yoshimoto, Masahiro; Takeda, Osamu*; Horino, Koki*; Ueno, Tomoaki*; Yanagibashi, Toru*; et al.

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.853 - 857, 2017/12

The most important issue is to reduce the uncontrolled beam loss in the high intensity hadron accelerator such as J-PARC proton accelerators. The J-PARC 3 GeV Synchrotron (RCS) has a collimator system which narrows a high intensity beam in the RCS. After startup of RCS in 2007, the collimator system of the RCS worked well. However, in April 2016, vacuum leakage at the collimator system occurred during the maintenance operation. To investigate a cause of the failure, we took apart iron shields of the collimator reducing exposed dose of operators. As a result of inspection, we succeeded to identify the cause of the vacuum leakage failure. In this presentation, we report the failure investigation of the beam collimator system in the RCS.

Journal Articles

Observation of momentum-dependent charge excitations in hole-doped cuprates using resonant inelastic X-ray scattering at the oxygen $$K$$ edge

Ishii, Kenji*; Toyama, Takami*; Asano, Shun*; Sato, Kentaro*; Fujita, Masaki*; Wakimoto, Shuichi; Tsutsui, Kenji*; Sota, Shigetoshi*; Miyawaki, Jun*; Niwa, Hideharu*; et al.

Physical Review B, 96(11), p.115148_1 - 115148_8, 2017/09

AA2017-0402.pdf:0.81MB

 Times Cited Count:29 Percentile:77.61(Materials Science, Multidisciplinary)

Journal Articles

Improvements of vacuum system in J-PARC 3 GeV synchrotron

Kamiya, Junichiro; Hikichi, Yusuke*; Namekawa, Yuya*; Takeishi, Kenichi; Yanagibashi, Toru*; Kinsho, Michikazu; Yamamoto, Kazami

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.3408 - 3411, 2017/06

The RCS vacuum system has been upgraded since the completion of its construction towards the objectives of both better vacuum quality and higher reliability of the components. For the better vacuum quality, (1) pressure of the injection beam line was improved to prevent the H$$^{-}$$ beam from converting to H$$^{0}$$; (2) leakage in the beam injection area due to the thermal expansion was eliminated by applying the adequate torque amount for the clamps; (3) new in-situ degassing method of the kicker magnet was developed. For the reliability increase of the components, (1) A considerable number of fluoroelastmer seal was exchanged to metal seal with the low spring constant bellows and the light clamps; (2) TMP controller for the long cable was developed to prevent the controller failure by the severe electrical noise; (3) A number of TMP were installed instead of ion pumps in the RF cavity section as an insurance for the case of pump trouble.

Journal Articles

New injection scheme of J-PARC rapid cycling synchrotron

Yamamoto, Kazami; Kamiya, Junichiro; Saha, P. K.; Takayanagi, Tomohiro; Yoshimoto, Masahiro; Hotchi, Hideaki; Harada, Hiroyuki; Takeda, Osamu*; Miki, Nobuharu*

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.579 - 581, 2017/05

The 3-GeV Rapid Cycling Synchrotron of Japan Proton Accelerator Research Complex aims to deliver 1-MW proton beam to the neutron target and Main Ring synchrotron. Present beam power of the Rapid Cycling Synchrotron is up to 500-kW and the higher radiation doses were concentrated in the injection area. These activations were caused by the interaction between the foil and the beam. To reduce the worker dose near the injection point, we have studied a new design of the injection scheme to secure enough space for radiation shielding and bellows. In the new system, two of four injection pulse bump magnets are replaced and we are able to ensure the additional space around the injection foil chamber. So far, new injection system seems not impossible. However, preliminary study result indicated that temperature of the duct and shielding metals would be slightly higher. The eddy current due to the shift bump magnet field generates heat. Thus we have to study details of above effect.

Journal Articles

A Malfunction of the beam collimator system in J-PARC 3 GeV rapid cycling synchrotoron

Yamamoto, Kazami; Okabe, Kota; Kamiya, Junichiro; Yoshimoto, Masahiro; Takeda, Osamu; Takayanagi, Tomohiro; Yamamoto, Masanobu

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.314 - 318, 2016/11

The 3 GeV Rapid-Cycling Synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) project generates 1MW proton beam for the neutron experiments and Main ring accelerator. In case of such high intensity hadron accelerator, the most important issue is to reduce the uncontrolled loss. The beam collimation system is designed for this purpose. In the present design, the physical aperture is 1.5 times wider than the primary collimator aperture and the beam loss can be enough localized on this condition. After a startup of RCS in 2007, the collimator system of RCS worked well. But vacuum leakage occurred during the maintenance period in April, 2016. Since it was expected that the beam collimator was radio-activated very much, we took the influence of radiation into consideration and designed the collimator (ie. a remote clamp system to connect/take off it with a vacuum flange away from itself). Therefore, during the recovery work of the collimator, we were able to reduce the worker dose to less than 60 micro Sv though the collimator block had a residual dose of 40 mSv/h.

Journal Articles

Thermal analysis of the injection beam dump at J-PARC RCS

Kamiya, Junichiro; Saha, P. K.; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 7th International Particle Accelerator Conference (IPAC '16) (Internet), p.2380 - 2382, 2016/06

The amount of the heat generation in the beam dump for unstripped H$$^{-}$$ beam at an injection in a high power beam synchrotron becomes a few thousand watts. In such case, the temperature of the dump materials might reach unacceptable values from the aspect of the mechanical strength decrease. The thermal analysis for the injection beam dump at J-PARC 3GeV synchrotron was performed in order to evaluate the upper limit of the beam power into the dump. The temperature distribution of beam dump was calculated by modelling the detail configuration and enough large region. The upper limit of the beam power into the dump, which keep the concrete temperature below permissible value, was estimated to be about 3 kW. The comparison with the measured temperature shows the thermal resistance between the contacted materials should be considered for more accurate calculation.

48 (Records 1-20 displayed on this page)