Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 146

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Report of the design examination and the installation work for the radiation shield at the beam injection area in the 3 GeV synchrotron

Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami

JAEA-Technology 2021-019, 105 Pages, 2021/11

JAEA-Technology-2021-019.pdf:10.25MB

Since a user operation startup, the 3 GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS, such as the magnet, vacuum chambers, beam monitors, etc., increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have organized a task force for the installation of the shield. The task force has aimed to optimize the structure of the radiation shield, construct the installation procedure with due consideration of the worker's dose suppression. As the examination result of the shield design, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The renewal work required to install the shielding has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area. It was a large-scale work to occupy the beam injection area during almost of the summer maintenance period. However, it is considered very meaningful for dose suppression in future maintenance works.

Journal Articles

Development of semiconductor clover switch for short-circuit protection of Klystron for J-PARC accelerator

Ono, Ayato; Takayanagi, Tomohiro; Ueno, Tomoaki*; Horino, Koki*; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.831 - 834, 2021/10

The Ignitron is used in the clover device of the klystron power supply for RF acceleration in the J-PARC LINAC. However, this ignitron uses mercury, the use of which is restricted worldwide, and its production is expected to be discontinued in the future. Therefore, we designed a semiconductor clover switch for short-circuit protection of klystron using a MOS gate thyristor. We have manufactured an oval-type board module that realizes an operating output of 3 kV, 40 kA, and 50 $$mu$$s per board. For the control power supply to each board module assuming a high voltage of 120 kV, we adopted a self-power supply method that creates a control power supply with a high-voltage DCDC converter from the voltage shared and charged by each board module. It was possible to confirm the operating performance on a 1/4 scale (30 kV, 40 kA) against the voltage of the existing equipment (120 kV, 40 kA) by connecting ten oval board modules in series. The output test result will be reported.

Journal Articles

Radiation shielding installation for beam injection section of 3GeV synchrotron

Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.238 - 242, 2021/10

Since a user operation startup, the 3GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The installation work of the shield has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area.

Journal Articles

Improved vacuum system for high-power proton beam operation of the rapid cycling synchrotron

Kamiya, Junichiro; Kotoku, Hirofumi*; Kurosawa, Shunta*; Takano, Kazuhiro; Yanagibashi, Toru*; Yamamoto, Kazami; Wada, Kaoru

Physical Review Accelerators and Beams (Internet), 24(8), p.083201_1 - 083201_23, 2021/08

 Times Cited Count:0 Percentile:0.03(Physics, Nuclear)

Through the operation of the vacuum system in J-PARC, it becomes evident that the high-power beam has more powerful effects on the vacuum system than expected. Those effects are the malfunction of vacuum equipment and the large pressure rise. The former is the failure of the turbomolecular pump (TMP) controller. The TMP itself is also damaged by a bearing crush due to a touch-down. We have developed a TMP controller that can connect with long cables of more than 200 m lengths to install the controller in a control room where there is no radiation influence. The TMP with high-strength bearing has been also developed. The latter is an extreme pressure rise with increasing the beam power. It is indicated that the pressure rise mechanism is a result of ion-stimulated gas desorption. It is finally confirmed that the dynamic pressure during the high-power beam is effectually suppressed by additionally installing the NEG pumps.

Journal Articles

Recent status of J-PARC rapid cycling synchrotron

Yamamoto, Kazami

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.3027 - 3030, 2021/08

The 3 GeV rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex (J-PARC) provides more than 700 kW beams to the Material and Life Science Facility (MLF) and Main Ring (MR). In such a high-intensity hadron accelerator, even losing less than 0.1% of the beam can cause many problems. Such lost protons can cause serious radio-activation and accelerator component malfunctions. Therefore, we have been continuing a beam study to achieve high-power operation. In addition, we have also improved and maintained the accelerator components to establish a stable operation. This paper reports the status of the J-PARC RCS over the last two years.

Journal Articles

Dependence of charge-exchange efficiency on cooling water temperature of a beam transport line

Yamamoto, Kazami; Hatakeyama, Shuichiro; Saha, P. K.; Moriya, Katsuhiro; Okabe, Kota; Yoshimoto, Masahiro; Nakanoya, Takamitsu; Fujirai, Kosuke; Yamazaki, Yoshio; Suganuma, Kazuaki

EPJ Techniques and Instrumentation (Internet), 8(1), p.9_1 - 9_9, 2021/07

The 3 GeV Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex supplies a high-intensity proton beam for neutron experiments. Various parameters are monitored to achieve a stable operation, and it was found that the oscillations of the charge-exchange efficiency and cooling water temperature were synchronized. We evaluated the orbit fluctuations at the injection point using a beam current of the injection dump, which is proportional to the number of particles that miss the foil and fail in the charge exchange, and profile of the injection beam. The total width of the fluctuations was approximately 0.072 mm. This value is negligible from the user operation viewpoint as our existing beam position monitors cannot detect such a small signal deviation. This displacement corresponds to a 1.63$$times$$10$$^{-5}$$ variation in the dipole magnetic field. Conversely, the magnetic field variation in the L3BT dipole magnet, which was estimated by the temperature change directly, is 4.08$$times$$10$$^{-5}$$. This result suggested that the change in the cooling water temperature is one of the major causes of the efficiency fluctuation.

JAEA Reports

Proposal of safe and secure maintenance method to realize long-term stable operation of electromagnet power supply

Ono, Ayato; Takayanagi, Tomohiro; Ueno, Tomoaki*; Horino, Koki*; Yamamoto, Kazami; Kinsho, Michikazu

JAEA-Technology 2021-005, 40 Pages, 2021/05

JAEA-Technology-2021-005.pdf:4.27MB

The 3-GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex (J-PARC) uses a large number of electromagnet power supplies in order to manipulate a high-intensity beam of 1 MW. These devices have been specially developed to meet the requirement to achieve acceleration of the 1-MW proton beams. State-of-the-art technologies are used to these devices. To achieve stable operation with few failures, and to prevent major troubles in the event of a failure, it is necessary to maintain the performance of the devices under the appropriate and accurate management strategy with an enough understanding of its characteristics. However, since the specification and function of each device is different respectively, and it is also produced by different manufacturer, we have to maintain adequately according to the structure, configuration and features of the apparatus. There are typically three major stages in the maintenance works. First, "Daily inspection" is constantly performed to monitor the status of the equipment during operation and check for any errors or abnormalities. Second, "Routine maintenance" is carried out weekly, monthly, or yearly to fix the errors, or to replace the parts that are deteriorated. Third, "Troubleshooting" is conducted to recover from sudden failures. In this report, we will introduce the specific contents of "Routine maintenance", "Daily inspection", and "trouble case" based on the experiences of the electromagnet power supply group. In particular, we will report the work management methods, including ideas for facilitating recovery work. We will also summarize the important points of a matter that does not depend on the configuration, structure, and characteristics of the equipment.

Journal Articles

Reliability of J-PARC accelerator system over the past decade

Yamamoto, Kazami; Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*

JPS Conference Proceedings (Internet), 33, p.011016_1 - 011016_7, 2021/03

The Japan Proton Accelerator Research Complex (J-PARC) is a multipurpose facility for scientific experiments. The accelerator complex consists of a 400-MeV Linac, a 3-GeV Rapid-Cycling Synchrotron (RCS) and a 30-GeV Main Ring synchrotron (MR). The RCS delivers a proton beam to the neutron target and MR, and the MR delivers the beams to the neutrino target and the Hadron Experimental Facility. The first operation of the neutron experiments began in December 2008. Following this, the user operation has been continued with some accidental suspensions. These suspensions include the recovery work due to the Great East Japan Earthquake in March 2011 and the radiation leak incident at the Hadron Experimental Facility. In this report, we summarize the major causes of suspension, and the statistics of the reliability of J-PARC accelerator system is analyzed. Owing to our efforts to achieve higher reliability, the Mean Time Between Failure (MTBF) has been improved.

Journal Articles

Recent status & improvements of the RCS vacuum system

Kamiya, Junichiro; Kotoku, Hirofumi; Hikichi, Yusuke*; Takahashi, Hiroki; Yamamoto, Kazami; Kinsho, Michikazu; Wada, Kaoru*

JPS Conference Proceedings (Internet), 33, p.011023_1 - 011023_6, 2021/03

The vacuum system is the key for the stable high power beam operation in J-PARC 3 GeV rapid cycling synchrotron (RCS), because the gas molecules in the beam line make the beam loss due to the scattering. The more than 10 years operation of the RCS vacuum system showed that the ultra-high vacuum (UHV) has been stably maintained by the several developments. The challenges for lower beam line pressure will exist in a future operation with higher beam power. For such challenge, a TMP with a rotor of titanium alloy, which have much higher mechanical strength than aluminum allow for the normal rotter, has been developed. Overcoming the difficulties of the machining performance of the titanium alloy rotor was successfully manufactured. We will report the summary of the 10 years operation of the RCS vacuum system and the incoming developments towards the XHV.

Journal Articles

1.2-MW-equivalent high-intensity beam tests in J-PARC RCS

Hotchi, Hideaki; Harada, Hiroyuki; Hayashi, Naoki; Kinsho, Michikazu; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Kazami; Yamamoto, Masanobu; et al.

JPS Conference Proceedings (Internet), 33, p.011018_1 - 011018_6, 2021/03

no abstracts in English

Journal Articles

Kicker power supply for J-PARC 3-GeV RCS with SiC-MOSFET

Takayanagi, Tomohiro; Ono, Ayato; Ueno, Tomoaki*; Horino, Koki*; Togashi, Tomohito; Yamamoto, Kazami; Kinsho, Michikazu; Koizumi, Isao*; Kawamata, Shunsuke*

JPS Conference Proceedings (Internet), 33, p.011020_1 - 011020_6, 2021/03

We are developing a new kicker power supply for J-PARC 3-GeV RCS (Rapid-Cycling Synchrotron) using the next generation power semiconductor SiC-MOSFET with high withstand voltage, low loss, and superior high frequency characteristics. The three major circuits adopted for the RCS kicker power supply, the thyratron switch, the PFN circuit of coaxial cable type, and the end clipper for reflection wave absorption, has been realized with a single modular circuit board based on the LTD circuit. The new kicker power supply realizes stable operation, miniaturization and energy saving by using power semiconductors. The required high voltage can be output by stacking the 800V/2kA modular circuit board in series. The details of circuit design and the results of achieving an output of half 20kV/2kA against the target specification of 40kV/2kA are presented here.

JAEA Reports

Construction of a design model for an electromagnet power supply with safety and reliability in the accelerator

Ono, Ayato; Takayanagi, Tomohiro; Ueno, Tomoaki*; Horino, Koki*; Yamamoto, Kazami; Kinsho, Michikazu

JAEA-Technology 2020-023, 40 Pages, 2021/02

JAEA-Technology-2020-023.pdf:2.98MB

The 3 GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex (J-PARC) uses a large number of electromagnet power supplies in order to generate a high-intensity beam of 1 MW. These devices have been specially developed to meet the required specifications of the proton beams. Ten years have passed since the 3 GeV synchrotron had started operation, and we need to replace and update of the components due to failures caused by the aging deterioration. Since the J-PARC is used by many users, it is quite important to recover as soon as possible when a trouble occurs. However, we often spend lots of time to investigate the status and cause of the problem, then it results in the delay of recovery work. One of the major reasons is due to the differences in the manufacturers of sensors and monitors. Therefore, we have to create a manual for each power supply and prepare some exclusive tools. However, troubles rarely occur in the same state and situation, so we have to rely on the experience and knowledge. Even for power supplies with different purposes and specifications, some components, such as sensors, can be shared in many cases. In addition, if the concept of the interlock system, for monitoring the status of the power supply and detecting malfunctions, is shared between the different power supplies, the method and response for failure investigation can be standardized. By using a device with good maintainability, the accelerator operation will be more stable and reliable. In this report, we introduce the necessity of sharing the design concept and common parts. We also explain the basic design model for safety and reliability, using an example of manufacturing an electromagnet power supply for the 3 GeV synchrotron.

Journal Articles

High voltage dependence measurement of beam loss monitor in J-PARC RCS

Hatakeyama, Shuichiro; Yoshimoto, Masahiro; Yamamoto, Kazami

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.475 - 477, 2020/09

J-PARC accelerators consist of linear accelerator (LINAC), 3GeV synchrotron (RCS) and main ring synchrotron (MR). RCS is an important facility delivering the beam to Materials and Life Science Experimental Facility (MLF) and MR. In RCS 87 proportional counter type beam loss monitors (PBLM) are installed and it is protecting the equipments on the beam line from the radioactivation by alerting the machine protection system (MPS) when the integrated value of the beam loss in an accelerating cycle gets over the limit. In this presentation, -1000V to -2000V high voltage are adapted to PBLMs and output was measured. In result, some PBLMs where the beam loss is large enough, there are saturations around -1400V to -2000V about the peak value of beam loss but no saturation about integral value of beam loss. Also it is considered the new HV system which solves some issues of the on-going HV system.

Journal Articles

Results of 1-MW operation in J-PARC 3 GeV rapid cycling synchrotron

Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Hatakeyama, Shuichiro; Hotchi, Hideaki; Yoshimoto, Masahiro; et al.

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.209 - 213, 2020/09

The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, just before the summer shutdown period, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. First trial was 1-hour continuous operation in July 2018, and second trial was 10-hours continuous in July 2019. In both cases, we achieved almost stable operation. Furthermore, in June 2020, we tried to operate continuously for over 40 hours. But in this case, some trouble occurred and the operation was frequently suspended. Through these continuous operation trials, we have identified issues for stable operation of 1 MW. In this presentation, we will report the results of 1-MW continuous operation and issues obtained from these results.

Journal Articles

Semiconductor switch power supply for RCS kicker

Takayanagi, Tomohiro; Ono, Ayato; Horino, Koki*; Ueno, Tomoaki*; Togashi, Tomohito; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.25 - 28, 2020/09

We have been developing a semiconductor switch power supply to replace the RCS kicker power supply in J-PARC. A SiC MOSFET is used as a power semiconductor element, and a radially symmetric LTD circuit is used for the circuit board. The power supply consists of a combination of two types of circuit boards: a main circuit board, which includes the circuits of the thyratron, PFN and end clipper provided in RCS kicker power supplies, on a single module board, and a correction board, which compensates for flat-top droop. A single main circuit board can provide 800V/2kA output, and 52 main circuit boards and 20 correction boards have been used to successfully achieve the high voltage of 40kV and flat-top flatness of less than $$pm$$0.2%. Furthermore, a preliminary test of the dual-parallel circuit was conducted for a twin kicker power supply configuration, which is required for the RCS kicker power supply. The evaluation results and prospects are presented.

Journal Articles

Development of ignitron alternative semiconductor switch for J-PARC accelerator

Ono, Ayato; Takayanagi, Tomohiro; Ueno, Tomoaki*; Horino, Koki*; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.590 - 593, 2020/09

At J-PARC, an ignitron is used for the clover device of the klystron power supply for high-frequency acceleration of a linear accelerator. Ignitron uses mercury, which is of limited use worldwide, and is expected to be discontinued in the future. Therefore, a semiconductor switch for ignitron substitution using a MOS gate thyristor is designed. In order to be used as a crowbar device, a switch capable of resisting an operating output of 120 kV, 40 kA, 50 us is required. We have realized an oval type substrate module that achieves an operating output of 3 kV, 40 kA, 50 us per substrate. It was possible to confirm the operating performance on a 1/10 scale (12 kV, 40 kA) against the voltage of the existing equipment (120 kV, 40 kA) by connecting four oval board modules in series. The output test result will be reported.

Journal Articles

First measurement and online monitoring of the stripper foil thinning and pinhole formation to achieve a longer foil lifetime in high-intensity accelerators

Saha, P. K.; Yoshimoto, Masahiro; Hatakeyama, Shuichiro; Hotchi, Hideaki; Harada, Hiroyuki; Tamura, Fumihiko; Yamamoto, Kazami; Yamazaki, Yoshio; Kinsho, Michikazu; Irie, Yoshiro*

Physical Review Accelerators and Beams (Internet), 23(8), p.082801_1 - 082801_13, 2020/08

 Times Cited Count:1 Percentile:35.83(Physics, Nuclear)

Journal Articles

J-PARC 3-GeV RCS; 1-MW beam operation and beyond

Hotchi, Hideaki; Harada, Hiroyuki; Hayashi, Naoki; Kinsho, Michikazu; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Kazami; Yamamoto, Masanobu; et al.

Journal of Instrumentation (Internet), 15(7), p.P07022_1 - P07022_16, 2020/07

 Times Cited Count:1 Percentile:27.17(Instruments & Instrumentation)

no abstracts in English

Journal Articles

Comparative studies of three-dimensional analysis and measurement for establishing pulse electromagnet design

Takayanagi, Tomohiro; Ueno, Tomoaki*; Horino, Koki*; Ono, Ayato; Yamamoto, Kazami; Kinsho, Michikazu

IEEE Transactions on Applied Superconductivity, 30(4), p.4901605_1 - 4901605_5, 2020/06

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

Journal Articles

New design of vacuum chambers for radiation shield installation at beam injection area of J-PARC RCS

Kamiya, Junichiro; Kotoku, Hirofumi; Shobuda, Yoshihiro; Takayanagi, Tomohiro; Yamamoto, Kazami; Yanagibashi, Toru*; Horino, Koki*; Miki, Nobuharu*

Journal of Physics; Conference Series, 1350, p.012172_1 - 012172_7, 2019/12

 Times Cited Count:0 Percentile:0.07

One of the issues in the J-PARC 3 GeV rapid cycling synchrotron is the high residual radiation dose around the beam injection point. A radiation shield is necessary to reduce radiation exposure of workers when maintenance is performed there. A space to install the radiation shield should be secured by newly designing a structure of the vacuum chamber at the injection point and the alumina ceramics beam pipes for the shift bump magnets. To make the space for the shield, the chamber is lengthened along the beam line and the cross-sectional shape is changed from circle to rectangle. The displacement and inner stress of the vacuum chamber due to atmospheric pressure were evaluated to be enough small by the calculation. For the ceramics beam pipe's rf-shield, the damping resistor was effective to reduce the induced modulation voltages by the pulsed magnetic field.

146 (Records 1-20 displayed on this page)