Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 23

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Report of the design examination and the installation work for the radiation shield at the beam injection area in the 3 GeV synchrotron

Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami

JAEA-Technology 2021-019, 105 Pages, 2021/11

JAEA-Technology-2021-019.pdf:10.25MB

Since a user operation startup, the 3 GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS, such as the magnet, vacuum chambers, beam monitors, etc., increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have organized a task force for the installation of the shield. The task force has aimed to optimize the structure of the radiation shield, construct the installation procedure with due consideration of the worker's dose suppression. As the examination result of the shield design, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The renewal work required to install the shielding has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area. It was a large-scale work to occupy the beam injection area during almost of the summer maintenance period. However, it is considered very meaningful for dose suppression in future maintenance works.

Journal Articles

Radiation shielding installation for beam injection section of 3GeV synchrotron

Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.238 - 242, 2021/10

Since a user operation startup, the 3GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The installation work of the shield has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area.

Journal Articles

Improved vacuum system for high-power proton beam operation of the rapid cycling synchrotron

Kamiya, Junichiro; Kotoku, Hirofumi*; Kurosawa, Shunta*; Takano, Kazuhiro; Yanagibashi, Toru*; Yamamoto, Kazami; Wada, Kaoru

Physical Review Accelerators and Beams (Internet), 24(8), p.083201_1 - 083201_23, 2021/08

 Times Cited Count:0 Percentile:0.03(Physics, Nuclear)

Through the operation of the vacuum system in J-PARC, it becomes evident that the high-power beam has more powerful effects on the vacuum system than expected. Those effects are the malfunction of vacuum equipment and the large pressure rise. The former is the failure of the turbomolecular pump (TMP) controller. The TMP itself is also damaged by a bearing crush due to a touch-down. We have developed a TMP controller that can connect with long cables of more than 200 m lengths to install the controller in a control room where there is no radiation influence. The TMP with high-strength bearing has been also developed. The latter is an extreme pressure rise with increasing the beam power. It is indicated that the pressure rise mechanism is a result of ion-stimulated gas desorption. It is finally confirmed that the dynamic pressure during the high-power beam is effectually suppressed by additionally installing the NEG pumps.

Journal Articles

A Possible modification of ceramic chambers in the injection area at the RCS in J-PARC

Shobuda, Yoshihiro; Kamiya, Junichiro; Takayanagi, Tomohiro; Horino, Koki*; Ueno, Tomoaki*; Yanagibashi, Toru*; Kotoku, Hirofumi*

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.3205 - 3208, 2021/08

At the injection area of the RCS in J-PARC, the interaction between the copper stripes (RF-shields) on the ceramic chambers and the external magnetic fields modulatesthe magnetic fields in the chamber, causing beam losses for a special tune. A ceramic chamber spirally covered by the stripes is a candidate to mitigate the modulations. In this report, we numerically and experimentally investigate how the interaction is suppressed, while sustaining the beam impedance enhancement within tolerable at the RCS.

Journal Articles

New design of vacuum chambers for radiation shield installation at beam injection area of J-PARC RCS

Kamiya, Junichiro; Kotoku, Hirofumi; Shobuda, Yoshihiro; Takayanagi, Tomohiro; Yamamoto, Kazami; Yanagibashi, Toru*; Horino, Koki*; Miki, Nobuharu*

Journal of Physics; Conference Series, 1350, p.012172_1 - 012172_7, 2019/12

 Times Cited Count:0 Percentile:0.07

One of the issues in the J-PARC 3 GeV rapid cycling synchrotron is the high residual radiation dose around the beam injection point. A radiation shield is necessary to reduce radiation exposure of workers when maintenance is performed there. A space to install the radiation shield should be secured by newly designing a structure of the vacuum chamber at the injection point and the alumina ceramics beam pipes for the shift bump magnets. To make the space for the shield, the chamber is lengthened along the beam line and the cross-sectional shape is changed from circle to rectangle. The displacement and inner stress of the vacuum chamber due to atmospheric pressure were evaluated to be enough small by the calculation. For the ceramics beam pipe's rf-shield, the damping resistor was effective to reduce the induced modulation voltages by the pulsed magnetic field.

Journal Articles

Activation in injection area of J-PARC 3-GeV rapid cycling synchrotron and its countermeasures

Yamamoto, Kazami; Yamakawa, Emi*; Takayanagi, Tomohiro; Miki, Nobuharu*; Kamiya, Junichiro; Saha, P. K.; Yoshimoto, Masahiro; Yanagibashi, Toru*; Horino, Koki*; Nakanoya, Takamitsu; et al.

ANS RPSD 2018; 20th Topical Meeting of the Radiation Protection and Shielding Division of ANS (CD-ROM), 9 Pages, 2018/08

The existing beam power of the J-PARC Rapid Cycling Synchrotron is up to 500 kW, and higher radiation doses are concentrated in the injection area. These activations are caused by the interaction between the foil and the beam. To reduce dose exposure to workers near the injection point, we study a new design of the injection scheme. Experience has shown that eddy currents are generated in the metal flange near the magnet owing to the pulsed magnetic field, and the temperature exceeds 100 degrees C. The shield installed in the new injection system needs to have a layer structure, in which an insulator is inserted between iron shields to reduce the eddy current. From the results of the shielding calculation, even if 1 mm of polyethylene was inserted between two 9-mm-thick SUS 316 plates, which serve as shielding material, the shielding performance was reduced only about 5%, and we confirmed that it would function well.

Journal Articles

Upgrade of vacuum chamber at RCS beam injection area aimed at lower radiation and maintainability increase

Kamiya, Junichiro; Yamamoto, Kazami; Yanagibashi, Toru*; Sato, Atsushi*; Miki, Nobuharu*

Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.645 - 648, 2018/08

Surround of the beam injection point in the J-PARC 3 GeV Rapid Cycling Synchrotron is the area where the residual radioactive dose is higher than other areas due to the beam scattering by the charge stripping foil. However, there is very little space to install radiation shields around the vacuum chamber in the beam injection point. Furthermore, the vacuum leak has often occurred due to the heat expansion of the chamber flange due to the induced current by the nearby pulse magnet. To solve such problems for minimizing the radiation exposure of maintenance workers, the vacuum chamber rin the beam injection point was newly designed. The space for the radiation shields was created by lengthening and the changing the cross-sectional shape. The titanium alloy with high mechanical strength was used for the flange material so that the flange was able to be fastened with higher tightening torque.

Journal Articles

Thermal desorption characteristics of several charge stripper carbon films for J-PARC RCS

Kamiya, Junichiro; Kinsho, Michikazu; Yamazaki, Yoshio; Yoshimoto, Masahiro; Yanagibashi, Toru*

Journal of the Vacuum Society of Japan, 60(12), p.484 - 489, 2017/12

Multi-turn H$$^{-}$$ charge exchange injection is employed as a beam injection method in the 3-GeV RCS (Rapid cycling synchrotron) at J-PARC (Japan Proton Accelerator Research Complex). In this method, injection H$$^{-}$$ beam is put on the same orbit as already circulating proton (H$$^{+}$$) beam in a dipole magnetic field due to the opposite curvature of the injected and circulating beams. In the straight section, where the two beams coincide with each other, both beams are passed through a thin foil, which strips two weakly bound electrons off each H$$^{-}$$ ion, forming an intense beam of protons. The thin foil, which is mostly made of carbon, would be the source of the outgassing, especially when its temperature rises due to the beam hitting. Therefore it is important to estimate the amount and components of the outgassing from the charge stripping foil. In this paper, we will report the thermal desorption measurement results for the several foil, which is used as the charge stripping foil in the RCS.

Journal Articles

A Failure investigation of the beam collimator system in the J-PARC 3 GeV rapid cycling synchrotron

Okabe, Kota; Yamamoto, Kazami; Kamiya, Junichiro; Takayanagi, Tomohiro; Yamamoto, Masanobu; Yoshimoto, Masahiro; Takeda, Osamu*; Horino, Koki*; Ueno, Tomoaki*; Yanagibashi, Toru*; et al.

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.853 - 857, 2017/12

The most important issue is to reduce the uncontrolled beam loss in the high intensity hadron accelerator such as J-PARC proton accelerators. The J-PARC 3 GeV Synchrotron (RCS) has a collimator system which narrows a high intensity beam in the RCS. After startup of RCS in 2007, the collimator system of the RCS worked well. However, in April 2016, vacuum leakage at the collimator system occurred during the maintenance operation. To investigate a cause of the failure, we took apart iron shields of the collimator reducing exposed dose of operators. As a result of inspection, we succeeded to identify the cause of the vacuum leakage failure. In this presentation, we report the failure investigation of the beam collimator system in the RCS.

Journal Articles

Improvements of vacuum system in J-PARC 3 GeV synchrotron

Kamiya, Junichiro; Hikichi, Yusuke*; Namekawa, Yuya*; Takeishi, Kenichi; Yanagibashi, Toru*; Kinsho, Michikazu; Yamamoto, Kazami

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.3408 - 3411, 2017/06

The RCS vacuum system has been upgraded since the completion of its construction towards the objectives of both better vacuum quality and higher reliability of the components. For the better vacuum quality, (1) pressure of the injection beam line was improved to prevent the H$$^{-}$$ beam from converting to H$$^{0}$$; (2) leakage in the beam injection area due to the thermal expansion was eliminated by applying the adequate torque amount for the clamps; (3) new in-situ degassing method of the kicker magnet was developed. For the reliability increase of the components, (1) A considerable number of fluoroelastmer seal was exchanged to metal seal with the low spring constant bellows and the light clamps; (2) TMP controller for the long cable was developed to prevent the controller failure by the severe electrical noise; (3) A number of TMP were installed instead of ion pumps in the RF cavity section as an insurance for the case of pump trouble.

Journal Articles

Vacuum improvement of kicker magnet area in J-PARC 3 GeV synchrotron

Kamiya, Junichiro; Yanagibashi, Toru; Ogiwara, Norio; Kinsho, Michikazu

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1193 - 1196, 2016/11

In this study, we propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs towards the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. The outgassing rage was reduced to one tenth comparing to the case without bake out.

Journal Articles

${{it In situ}}$ baking method for degassing of a kicker magnet in accelerator beam line

Kamiya, Junichiro; Ogiwara, Norio; Yanagibashi, Toru*; Kinsho, Michikazu; Yasuda, Yuichi*

Journal of Vacuum Science and Technology A, 34(2), p.021604_1 - 021604_10, 2016/03

 Times Cited Count:1 Percentile:6.36(Materials Science, Coatings & Films)

In this study, we propose a new ${{it in situ}}$ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted heat expansion of the chamber. The bake-out system comprises the heater and thermal radiation shield plates, which are installed between the kicker magnet and the chamber wall. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that heat expansion of the chamber was negligibly small.

Journal Articles

Degassing of kicker magnet by in-situ bake-out method

Kamiya, Junichiro; Ogiwara, Norio; Hikichi, Yusuke; Kinsho, Michikazu; Miki, Nobuharu*; Yanagibashi, Toru*

Proceedings of 6th International Particle Accelerator Conference (IPAC '15) (Internet), p.2911 - 2913, 2015/06

New method of in-situ degassing of the kicker magnet in the beam line has been developed. The heater and heat shielding panels are installed in the vacuum chamber in this method. The heater was designed considering the maintainability. The graphite was selected as the heater and the high melting point metals were used as the reflectors just near the heater. The thermal analysis and the temperature measurement with the designed heater was performed. The ideal temperature distribution for the kicker degassing was obtained. The outgassing of the graphite during rising the temperature was measured. The result showed that the outgassing was extremely suppressed by the first heating. This means the outgassing of the graphite heater was negligible as long as it is used in the beam line without exposure to the air.

Journal Articles

In situ degassing of the kicker magnet in J-PARC RCS

Kamiya, Junichiro; Ogiwara, Norio; Hikichi, Yusuke; Yanagibashi, Toru; Kinsho, Michikazu

Journal of the Vacuum Society of Japan, 58(4), p.134 - 139, 2015/04

This report aims to propose a new in situ degassing method by which only the kicker magnets were baked out without raising the temperature of the vacuum chamber by installing heat source and heat shield between the kicker magnet and the chamber wall. The target temperature of the ferrites in the kicker magnet is above 100$$^{circ}$$C, while keeping the temperature rise of the vacuum chamber less than 30$$^{circ}$$C in order to prevent the heat expansion of the vacuum chamber. After checking the operability of this method by thermal analysis with simple model, the experimental measurement was performed by using a RCS kicker magnet. The results showed that the target temperature was able to be achieved by this degassing method.

Journal Articles

Development of a turbo-molecular pump with a magnetic shield function

Ogiwara, Norio; Yanagibashi, Toru; Hikichi, Yusuke; Nishikawa, Masaaki; Kamiya, Junichiro; Wada, Kaoru*

Vacuum, 98, p.18 - 21, 2013/12

 Times Cited Count:6 Percentile:30.5(Materials Science, Multidisciplinary)

Journal Articles

Vacuum chamber made of soft magnetic material with high permeability

Kamiya, Junichiro; Ogiwara, Norio; Nishikawa, Masaaki; Hikichi, Yusuke; Yanagibashi, Toru; Kinsho, Michikazu

Vacuum, 98, p.12 - 17, 2013/12

 Times Cited Count:8 Percentile:38.93(Materials Science, Multidisciplinary)

One of the reasons of a beam loss in a high power accelerator is leakage magnetic field from a magnet at a close beam line, which distorts the beam orbit and makes the beam hit the wall of the beam pipe. The most effective way to shield such leakage field is to cover the beam by the magnetic materials at the nearest space. This means that vacuum chambers should be made of the magnetic materials. We selected the permalloy, which has very high magnetic permeability for such a magnetic material. However, there is not proven evidence of the vacuum chambers, which are made of magnetic materials. We have developed a vacuum chamber of such new material with the object of vacuum and magnetic characteristics.

Journal Articles

Reduction of outgassing from the ferrite cores in the kicker magnet of J-PARC 3-GeV rapid cycling synchrotron

Ogiwara, Norio; Suganuma, Kazuaki; Hikichi, Yusuke; Nishikawa, Masaaki; Yanagibashi, Toru; Kamiya, Junichiro; Kinsho, Michikazu

Journal of the Vacuum Society of Japan, 56(5), p.159 - 162, 2013/05

Journal Articles

Status of the vacuum system in J-PARC RCS

Kamiya, Junichiro; Ogiwara, Norio; Nishikawa, Masaaki; Hikichi, Yusuke; Yanagibashi, Toru; Kinsho, Michikazu

Proceedings of 3rd International Particle Accelerator Conference (IPAC '12) (Internet), p.2522 - 2524, 2012/05

In the vacuum system of J-PARC Rapid cycling synchrotron (RCS), we use beam pipes and bellows whose materials are vacuum fired at 700$$sim$$850 $$^{circ}$$C in order to eliminate atoms in their bulk who are origin of outgassing. Until now, beam power has been increased up to 300 kW. Pressure in synchrotron beam line increased when the high power beam was accelerated. However, increment of pressure has reduced during the continuous beam operation. It is because the molecules, which adsorb on surface of the wall of the vacuum chambers, desorb by an ion bombardment and a heat generation due to an eddy current. Because the atoms in the bulk is eliminated, desorption of the molecules, which adsorb on the surface, means the reduction of the outgassing from the wall. In this presentation, we will report the past situation of the vacuum system during the beam operation. In addition, we also show the status after the Great East Japan Earthquake.

Journal Articles

Reduction of outgassing from the ferrite cores in the kicker magnet of J-PARC RCS

Ogiwara, Norio; Suganuma, Kazuaki; Hikichi, Yusuke; Nishikawa, Masaaki; Yanagibashi, Toru; Kamiya, Junichiro; Kinsho, Michikazu

Proceedings of 3rd International Particle Accelerator Conference (IPAC '12) (Internet), p.487 - 489, 2012/05

Journal Articles

Development of an in-situ bake-out method for outgassing reduction of kicker ferrite cores

Kamiya, Junichiro; Ogiwara, Norio; Nishikawa, Masaaki; Hikichi, Yusuke; Yanagibashi, Toru; Suganuma, Kazuaki

Journal of the Vacuum Society of Japan, 55(4), p.156 - 159, 2012/04

It is usually difficult to reduce outgassing of a large structure inside a vacuum chamber by baking the whole chamber, which causes the large extension of the chamber and needs a lot of heater power. The solution is to rise the temperature of structure object without heating the vacuum chamber. This means to install heat source inside the chamber and increase the heat quantity to the object by inserting the heat shield between the object and the chamber. In the particle accelerator field, there are a lot of such requirements for reducing outgassing of structures inside vacuum chambers. One example is a kicker magnet, which is installed in a vacuum chamber and consists mainly of ferrite cores and aluminum electric plates. We applied the above method to the outgassing reduction of the kicker. In this article, we show outline of this in-situ bake-out method, the effects of the heat shield on the heat quantity and the result of the outgassing reduction.

23 (Records 1-20 displayed on this page)