Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 58

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

How different is the core of $$^{25}$$F from $$^{24}$$O$$_{g.s.}$$ ?

Tang, T. L.*; Uesaka, Tomohiro*; Kawase, Shoichiro; Beaumel, D.*; Dozono, Masanori*; Fujii, Toshihiko*; Fukuda, Naoki*; Fukunaga, Taku*; Galindo-Uribarri, A.*; Hwang, S. H.*; et al.

Physical Review Letters, 124(21), p.212502_1 - 212502_6, 2020/05

 Times Cited Count:14 Percentile:74.77(Physics, Multidisciplinary)

The structure of a neutron-rich $$^{25}$$F nucleus is investigated by a quasifree ($$p,2p$$) knockout reaction. The sum of spectroscopic factors of $$pi 0d_{5/2}$$ orbital is found to be 1.0 $$pm$$ 0.3. The result shows that the $$^{24}$$O core of $$^{25}$$F nucleus significantly differs from a free $$^{24}$$O nucleus, and the core consists of $$sim$$35% $$^{24}$$O$$_{rm g.s.}$$, and $$sim$$65% excited $$^{24}$$O. The result shows that the $$^{24}$$O core of $$^{25}$$F nucleus significantly differs from a free $$^{24}$$O nucleus. The result may infer that the addition of the $$0d_{5/2}$$ proton considerably changes the neutron structure in $$^{25}$$F from that in $$^{24}$$O, which could be a possible mechanism responsible for the oxygen dripline anomaly.

Journal Articles

CIELO collaboration summary results; International evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogen

Chadwick, M. B.*; Capote, R.*; Trkov, A.*; Herman, M. W.*; Brown, D. A.*; Hale, G. M.*; Kahler, A. C.*; Talou, P.*; Plompen, A. J.*; Schillebeeckx, P.*; et al.

Nuclear Data Sheets, 148, p.189 - 213, 2018/02

 Times Cited Count:61 Percentile:98.12(Physics, Nuclear)

The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear facilities - $$^{235}$$U, $$^{238}$$U, $$^{239}$$Pu, $$^{56}$$Fe, $$^{16}$$O and $$^{1}$$H - with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality. This report summarizes our results and outlines plans for the next phase of this collaboration.

Journal Articles

The CIELO collaboration; Progress in international evaluations of neutron reactions on Oxygen, Iron, Uranium and Plutonium

Chadwick, M. B.*; Capote, R.*; Trkov, A.*; Kahler, A. C.*; Herman, M. W.*; Brown, D. A.*; Hale, G. M.*; Pigni, M.*; Dunn, M.*; Leal, L.*; et al.

EPJ Web of Conferences, 146, p.02001_1 - 02001_9, 2017/09

 Times Cited Count:6 Percentile:95.25

The CIELO collaboration has studied neutron cross sections on nuclides ($$^{16}$$O, $$^{56}$$Fe, $$^{235,238}$$U and $$^{239}$$Pu) that significantly impact criticality in nuclear technologies with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality.

Journal Articles

Current status of electrostatic accelerator at TIARA

Usui, Aya; Chiba, Atsuya; Yamada, Keisuke; Yokoyama, Akihito; Kitano, Toshihiko*; Takayama, Terumitsu*; Orimo, Takao*; Kanai, Shinji*; Aoki, Yuki*; Hashizume, Masashi*; et al.

Dai-28-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.117 - 119, 2015/12

no abstracts in English

Journal Articles

Current status of electrostatic accelerators at TIARA

Usui, Aya; Uno, Sadanori; Chiba, Atsuya; Yamada, Keisuke; Yokoyama, Akihito; Kitano, Toshihiko*; Takayama, Terumitsu*; Orimo, Takao*; Kanai, Shinji*; Aoki, Yuki*; et al.

Dai-27-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.118 - 121, 2015/03

no abstracts in English

Journal Articles

R&D status on water cooled ceramic breeder blanket technology

Enoeda, Mikio; Tanigawa, Hisashi; Hirose, Takanori; Nakajima, Motoki; Sato, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Hayashi, Takumi; Yamanishi, Toshihiko; et al.

Fusion Engineering and Design, 89(7-8), p.1131 - 1136, 2014/10

 Times Cited Count:20 Percentile:84.35(Nuclear Science & Technology)

The development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. Regarding the fabrication technology development using F82H, the fabrication of a real scale mockup of the back wall of TBM was completed. Also the assembling of the complete box structure of the TBM mockup and planning of the pressurization testing was studied. The development of advanced breeder and multiplier pebbles for higher chemical stability was performed for future DEMO blanket application. From the view point of TBM test result evaluation and DEMO blanket performance design, the development of the blanket tritium simulation technology, investigation of the TBM neutronics measurement technology and the evaluation of tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been performed.

Journal Articles

Operation of electrostatic accelerators

Uno, Sadanori; Chiba, Atsuya; Yamada, Keisuke; Yokoyama, Akihito; Usui, Aya; Saito, Yuichi; Ishii, Yasuyuki; Sato, Takahiro; Okubo, Takeru; Nara, Takayuki; et al.

JAEA-Review 2013-059, JAEA Takasaki Annual Report 2012, P. 179, 2014/03

Three electrostatic accelerators at TIARA were operated on schedule in fiscal year 2012 except changing its schedule by cancellations of users. The yearly operation time of the 3 MV tandem accelerator, the 400 kV ion implanter and the 3MV single-ended accelerator were in the same levels as the ordinary one, whose operation time totaled to 2,073, 1,847 and 2,389 hours, respectively. The tandem accelerator had no trouble, whereas the ion implanter and the single-ended accelerator stopped by any troubles for one day and four days, respectively. The molecular ion beam of helium hydride was generated by the ion implanter, because the users required irradiation of several cluster ions in order to study the effect of irradiation. As a result, its intensity of beam was 50 nA at 200 kV. The ion beam of tungsten (W) at 15 MeV was accelerated by the tandem accelerator, whose intensity was 20 nA at charge state of 4+, because of the request from a researcher in the field of nuclear fusion.

Journal Articles

Current status of electrostatic accelerators at TIARA

Uno, Sadanori; Chiba, Atsuya; Yamada, Keisuke; Yokoyama, Akihito; Usui, Aya; Kitano, Toshihiko*; Takayama, Terumitsu*; Orimo, Takao*; Kanai, Shinji*; Aoki, Yuki*; et al.

Dai-26-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.79 - 81, 2013/07

Three electrostatic accelerators at TIARA were operated on schedule in fiscal year 2012 except changing its schedule by cancellations of users. The yearly operation time of the 3MV tandem accelerator, the 400 kV ion implanter and the 3 MV single-ended accelerator were in the same levels as the ordinary one, whose operation time totaled to 2,073, 1,847 and 2,389 hours, respectively. The tandem accelerator had no trouble, whereas the ion implanter and the single-ended accelerator stopped by any troubles for one day and four days, respectively. The ion implanter generated molecular ion beam of helium hydride by using the Freeman type ion source, because of the request from the user. As a result, its intensity of beam was 50 nA at 200 kV.

Journal Articles

Operation of electrostatic accelerators

Uno, Sadanori; Chiba, Atsuya; Yamada, Keisuke; Yokoyama, Akihito; Saito, Yuichi; Ishii, Yasuyuki; Sato, Takahiro; Okubo, Takeru; Nara, Takayuki; Kitano, Toshihiko*; et al.

JAEA-Review 2012-046, JAEA Takasaki Annual Report 2011, P. 173, 2013/01

The three electrostatic accelerators at the TIARA had no mechanical damage when the Tohoku earthquake happened on March 11, 2011. But, they could not be operated during April, due to the influence of planned power outage by TEPCO. These accelerators additionally operated on Saturday for ten days in order to compensate for the lost experiment time. As a result, the yearly operation time had kept the same level as the ordinary one. The ion beam of erbium (Er) with 11.7MeV was accelerated newly by the tandem accelerator, whose intensity was 20nA at charge state of 3+. The sequential generation/irradiation of two different kinds of fullerene ions was achieved at the ion implanter by a mixed powder method without exchange of the Freeman type ion source by the user's request.

Journal Articles

Operation of electrostatic accelerators at TIARA

Uno, Sadanori; Chiba, Atsuya; Yamada, Keisuke; Yokoyama, Akihito; Saito, Yuichi; Ishii, Yasuyuki; Sato, Takahiro; Okubo, Takeru; Nara, Takayuki; Kitano, Toshihiko*; et al.

Dai-7-Kai Takasaki Oyo Kenkyu Shimpojiumu Yoshishu, P. 119, 2012/10

The three electrostatic accelerators at TIARA had no damage when the Tohoku earthquake happened on March 11, 2011. But, they could not be operated until end of April, due to the influence of planned power outage and keep out into the controlled area for radiation. These accelerators additionally operated on Saturday for twelve days in order to compensate for the lost experiment time. Therefore, the yearly operation time had kept the same level as the ordinary one. The tandem accelerator has stopped leakage of the SF$$_{6}$$ gas from the base flange on the tank by the Viton gasket of rectangular cross section at the new type.

Journal Articles

Current status of electrostatic accelerators at TIARA

Uno, Sadanori; Chiba, Atsuya; Yamada, Keisuke; Yokoyama, Akihito; Kitano, Toshihiko*; Takayama, Terumitsu*; Orimo, Takao*; Kanai, Shinji*; Aoki, Yuki*; Yamada, Naoto*; et al.

Dai-25-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.64 - 66, 2012/07

The three electrostatic accelerators at the TIARA had no damage when the Tohoku earthquake happened on March 11, 2011. But, they could not be operated until end of April, due to the influence of planned power outage and keep out into the controlled area for radiation. These accelerators additionally operated on Saturday for twelve days in order to compensate for the lost experiment time. Therefore, the yearly operation time had kept the same level as the ordinary one. The tandem accelerator has stopped leakage of the SF$$_{6}$$ gas from the base flange on the tank by the Viton gasket of rectangular cross section at the new type. The ion implanter could generate two kinds of fullerene ions by a mixed material of ions and a controlled temperature of the oven without exchange of ion source.

Journal Articles

Operation of the electrostatic accelerators

Agematsu, Takashi; Uno, Sadanori; Chiba, Atsuya; Yamada, Keisuke; Yokoyama, Akihito; Saito, Yuichi; Ishii, Yasuyuki; Sato, Takahiro; Okubo, Takeru; Yokota, Wataru; et al.

JAEA-Review 2011-043, JAEA Takasaki Annual Report 2010, P. 173, 2012/01

Three electrostatic accelerators of TIARA were operated smoothly in FY 2010, and all the planned experiments were carried out except those canceled by users or the impact of Great East Japan Earthquake on March 11, 2011. On the other hand, Saturday operation for experiments was carried out after October on the Global Nuclear-Human Resource Development Initiative. The yearly operation time of the tandem accelerator, the single-ended accelerator and the ion implanter amounted to 2116, 2367 and 1800 hours, respectively, which were similar to those of usual years. Regarding the single-ended accelerator, the generator in the high-voltage terminal failed and was replaced with new one. A switching magnet was installed for a new branch beam line of the ion implanter. As to the tandem accelerator, In ion was generated and accelerated at intensity of 500 nA.

Journal Articles

Ferromagnetic interlayer coupling in C$$_{60}$$-Co compound/Ni bilayer structure

Matsumoto, Yoshihiro; Sakai, Seiji; Entani, Shiro; Takagi, Yasumasa*; Nakagawa, Takeshi*; Naramoto, Hiroshi*; Avramov, P.; Yokoyama, Toshihiko*

Chemical Physics Letters, 511(1-3), p.68 - 72, 2011/07

 Times Cited Count:5 Percentile:16.5(Chemistry, Physical)

X-ray magnetic circular dichroism (XMCD) spectroscopy was employed to investigate the electronic and magnetic structures of the bilayers of a C$$_{60}$$-Co compound and Ni. A few -several nm thick C$$_{60}$$-Co compound layers on the Ni(111) surface are found to show intense XMCD signals attributed to the localized Co d-spins only with the remanent magnetization of Ni layer. It is suggested that the region of the C$$_{60}$$-Co compound within 3 nm from the interface is ferromagnetically coupled with Ni due to the indirect exchange interaction mediated by C$$_{60}$$, probably relevant to the interlayer charge transfer.

Journal Articles

Current status of electrostatic accelerators at TIARA

Uno, Sadanori; Chiba, Atsuya; Yamada, Keisuke; Yokoyama, Akihito; Agematsu, Takashi; Kitano, Toshihiko*; Takayama, Terumitsu*; Orimo, Takao*; Kanai, Shinji*; Aoki, Yuki*; et al.

Dai-24-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.125 - 128, 2011/07

The yearly operation time of three electrostatic accelerators at TIARA of Japan Atomic Energy Agency is keeping the same level since 2000, the tandem accelerator, the ion implanter and the single-ended accelerator amounted to about 2000, 1900 and 2500 hours, respectively. Three electrostatic accelerators did not have damage when the Tohoku Earthquake occurred on March 11, 2011. However, these accelerators were not able to operate during the planned power outage by Tokyo Electric Power Company (TEPCO). The tandem accelerator accelerated ion beam of In, which gave intensity of 500nA with stability. Additionally, the ion implanter generated maximum 400nA at ion beam of Gd, which was used in experiments for the users.

Journal Articles

Operation of the electrostatic accelerators

Agematsu, Takashi; Uno, Sadanori; Chiba, Atsuya; Yamada, Keisuke; Yokoyama, Akihito; Saito, Yuichi; Ishii, Yasuyuki; Sato, Takahiro; Okubo, Takeru; Yokota, Wataru; et al.

JAEA-Review 2010-065, JAEA Takasaki Annual Report 2009, P. 181, 2011/01

Three electrostatic accelerators of TIARA were operated smoothly in FY 2009, and all the planned experiments were carried out except those canceled by users. The yearly operation time of the tandem accelerator, the single-ended accelerator and the ion implanter amounted to 2100, 2416 and 1866 hours, respectively. Regarding the single-ended accelerator, the radio frequency oscillator of the ion source mounted in high-voltage terminal and the sequencer for control of the SB beam line failed, and they were replaced. The oven controller of Freeman ion source of the ion implanter was renewed. As to the tandem accelerator, Mn ion was successfully generated and accelerated with intensity of 150 nA.

Journal Articles

Current status of electrostatic accelerators at TIARA

Chiba, Atsuya; Uno, Sadanori; Yamada, Keisuke; Yokoyama, Akihito; Agematsu, Takashi; Yokota, Wataru; Kitano, Toshihiko*; Takayama, Terumitsu*; Kanai, Shinji*; Orimo, Takao*; et al.

Dai-23-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.119 - 122, 2010/11

Operation times of each accelerator are keeping the same level as in recent 10 years, Tandem accelerator, Single-ended and Ion implanter amounted to about 2,000, 2,500 and 1,900 hours, respectively. In the last fiscal year, we succeeded in maintaining the terminal voltage of the tandem accelerator to high stability for long periods by exchanging the material of a corona-probe needle to the tungsten (NPS Co.). In the ion-implanter, the oven control system equipped with the Freeman ion source was renewed. There was no trouble to affect on the machine-time in the last fiscal year, so the all planned experiments were carried out.

Journal Articles

Evaluation of tritium trap effect produced by high energy proton irradiation in SS316

Nakamura, Hirofumi; Kobayashi, Kazuhiro; Yokoyama, Sumi*; Saito, Shigeru; Yamanishi, Toshihiko; Kikuchi, Kenji*

Journal of Plasma and Fusion Research SERIES, Vol.9, p.326 - 331, 2010/08

Based on results of tritium measurement in the SS316 specimens irradiated up to 5.9 dpa in the SINQ target (580 MeV proton) using a thermal desorption (TDS) method, trap site density and trap energy in the materials induced by the high-energy proton irradiation have been evaluated by means of the numerical tritium transport analysis. The results indicate that almost residual tritium in the SS316 specimen exists in the trap site, whose trap density is maximum 238 appm (5.9 dpa) and trap energy is $$>$$ 1.4 eV, and that tritium release by the TDS is mainly attributed to the disappearance of the trap sites by the specimen heating, whose activation energy is about 0.7 eV. The trap site density seems to be almost proportional to the irradiation dose (dpa). Additionally, irradiation conditions such as the dose or irradiation temperature do not affect on the trapping mechanism.

Journal Articles

Emittance measurement using scintillator luminescence induced by MeV proton beam

Yokoyama, Akihito; Ishii, Yasuyuki; Chiba, Atsuya; Uno, Sadanori; Agematsu, Takashi; Takayama, Terumitsu*; Kitano, Toshihiko*

Dai-23-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.147 - 150, 2010/07

no abstracts in English

Journal Articles

Current status of electrostatics accelerators at TIARA

Chiba, Atsuya; Uno, Sadanori; Yamada, Keisuke; Yokoyama, Akihito; Agematsu, Takashi; Kitano, Toshihiko*; Takayama, Terumitsu*; Orimo, Takao*; Koka, Masashi*; Aoki, Yuki*; et al.

Dai-22-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.104 - 106, 2010/01

no abstracts in English

Journal Articles

Operation of the electrostatic accelerators

Agematsu, Takashi; Uno, Sadanori; Chiba, Atsuya; Yamada, Keisuke; Yokoyama, Akihito; Saito, Yuichi; Ishii, Yasuyuki; Sato, Takahiro; Okubo, Takeru; Yokota, Wataru; et al.

JAEA-Review 2009-041, JAEA Takasaki Annual Report 2008, P. 175, 2009/12

Three electrostatic accelerators of TIARA were operated smoothly in FY 2008, and all the planned experiments were carried out except those canceled by users. The yearly operation time of the tandem accelerator, the single-ended accelerator and the ion implanter amounted to 2009, 2426 and 1882 hours, respectively. Regarding the tandem accelerator, the control system was renewed, and the unstable acceleration voltage caused by mechanical vibration reduced by adjusting the driving mechanism of the pellet chains. The SF$$_{6}$$ gas for the single-ended accelerator was purified, and its storage tank was repainted. As to the ion implanter, Bi$$_{2}$$ ion, which was requested by users, was successfully generated and accelerated with intensity of 0.5$$mu$$A.

58 (Records 1-20 displayed on this page)