Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
湊 太志; 岩本 修
no journal, ,
遅発中性子は原子炉の安定運転に重要な要素の一つである。それに加えて、r-processによる星の中の元素合成や、核構造の研究とも密接につながっている。そのような背景の元で、ORNLやJYFL、GSIなどの実験施設で遅発中性子の新たな測定が行われ始めている。しかし、短寿命の核種を扱うために、全ての遅発中性子のデータを実験的に測定することは、依然として難しい。それゆえ、遅発中性子データを完備するためには、理論モデルと相補的に研究を行うことが要求されている。このため、遅発中性子と中性子スペクトルを理論的に導出することを目的として、陽子中性子乱雑位相近似法(pnQRPA)と統計モデルのハイブリッドモデルを構築した。このモデルは、従来の理論計算には含まれていなかった相互作用の自己無撞着性や変形効果を含んでいるのが特徴である。本研究によって導出された遅発中性子放出率の結果は、典型的な先行核において、従来型モデルの一つであるFRDM+QRPAよりも精度よく実験データを再現することが分かった。本発表ではさらに、遅発中性子の理論計算では、変形効果が重要な役割を演じていることを議論する。
家田 淳一; Barnes, S. E.*; 前川 禎通
no journal, ,
スピン・軌道相互作用は、異方的交換相互作用と反対称交換相互作用の2つの競合する相互作用を導く。同様に、表面Rashbaスピン・軌道相互作用により強磁性金属において、2つの相互作用が生じる。前者は面内磁気異方性を、また後者は垂直磁気異方性を与え、どちらが支配的かは強磁性体の電子状態による。特に超薄膜では、表面Rashbaスピン・軌道相互作用が外部電場で制御が可能なことから、磁気異方性の電場依存性は興味深い。この新しい垂直磁化の発生機構を提示する。
錦野 将元; 長谷川 登; 富田 卓朗*; 江山 剛史*; 柿本 直也*; 大西 直文*; 羽富 大紀*; 伊藤 篤史*; 南 康夫*; 武井 亮太*; et al.
no journal, ,
近年、フェムト秒レーザーアブレーションによるリップル形成、ナノスケールアブレーションやナノ粒子生成などに関する興味深い現象が数多く報告されているが、その基礎的なメカニズムは理解されていない。フェムト秒レーザー照射による金属のアブレーション過程の解明のために、フェムト秒レーザー(波長795nm, パルス幅80fs)ポンプ・ピコ秒軟X線レーザー(波長13.9nm, パルス幅7ps)プローブを構築し、ピコからナノ秒スケールで起きる金属のフェムト秒レーザーアブレーション過程の観測を行った。フェムト秒レーザー照射直後、数百ピコ秒後までの時間領域のサンプル表面でのアブレーション面の膨張過程についてダブルロイズ鏡を用いた軟X線干渉計測を行い、アブレーションフロントの表面状態について解析を行った。これらの実験結果と分子動力学シミュレーションを用いたフェムト秒レーザーアブレーションに関する結果を比較しアブレーションダイナミクスの検討を行った。これらの解析結果について講演する。
小林 卓也
no journal, ,
東京電力福島第一原子力発電所の事故から約3年が経過した現在、事故起因の放射性物質の拡散状況が少しずつ明らかになってきた。本稿では、海水中の事故由来の放射性核種について、放出状況と分布の概況、今後の課題について解説する。福島第一原子力発電所から海洋への放射性物質の放出状況として主なものは、(1)大気中に放出された放射性核種の海表面沈着、(2)2011年4月1日から6日にかけて、2号機ピットからの漏洩、(3)4月4日から10日にかけて比較的低濃度の汚染水の漏洩、(4)5月10日から11日にかけて3号機取水口付近からの漏えい、(5)12月4日の蒸発濃縮装置からの漏えい、がある。汚染水の海洋における分布の概況として、原子力機構が実施した福島沿岸、日本近海、太平洋規模の予測シミュレーション結果と、様々な研究機関が実施した海洋観測結果を時系列で見ると、事故発生直後に大気へ放出された放射性物質の海表面沈着による太平洋規模の広域汚染があり、その後、海洋への直接放出による沿岸域の高濃度汚染、そして黒潮続流による東方への輸送が続く。汚染水の今後の課題として福島第一原子力発電所に滞留・貯留している汚染水が漏洩する可能性に備える必要がある。
坂井 徹; 中野 博生*
no journal, ,
京コンピューターなどによる大規模数値対角化を用いて、等方的なS=1/2カゴメ格子量子ハイゼンベルグ反強磁性体の磁化過程を解析したところ、飽和磁化の3分の1のところで新しい磁場誘起量子相転移を発見し、磁化ランプと名付けた。また格子歪みを導入して、その歪みに対する磁化3分の1位における量子相転移を調べたところ、一様なカゴメ格子反強磁性体はちょうど量子臨界点の直上にあることが判明した。
筒井 健二; 遠山 貴己*; 森 道康; Khaliullin, G.*
no journal, ,
銅酸化物高温超伝導物質における銅L吸収端共鳴非弾性X線散乱スペクトルを、ハバード模型やd-p模型の有限サイズクラスタに対する数値的厳密対角化法により計算し、ホール・ドープ系の入射X線のエネルギー依存性等を議論する。
池田 隆司; Chai, G.*; Hou, Z.*; 寺倉 清之*
no journal, ,
近年、窒素等のヘテロ原子をドープしたカーボンアロイ触媒が固体高分子形燃料電池の正極での酸素還元反応の有望な白金代替触媒として注目されており、盛んに研究開発が行われている。触媒活性の更なる向上のためには、触媒活性点と反応機構の原子レベルでの理解が必須である。我々はこれまでに、炭素材を端のあるグラフェンシートに簡素化したモデルを用いて第一原理電子状態計算を基盤とした分子動力学計算を行い、カーボンアロイ触媒における触媒活性に寄与する窒素の配置および触媒活性点での酸素還元反応機構を報告してきた。今回は、電極電位を考慮した熱平衡状態計算により得られた窒素等をドープしたグラフェン端での可能な酸素還元反応経路および各活性点での触媒活性の総括を行う。
宮戸 直亮; 矢木 雅敏
no journal, ,
磁場閉じ込めトロイダルプラズマで時々観測されるような、プラズマ端での密度ソースに対するプラズマの非局所応答が簡約化MHDモデルに基づくシミュレーションで発見されている。しかし、これらは非局所応答が起きる炉心領域に乱流が存在しないシミュレーションであった。炉心領域ではイオン温度勾配(ITG)駆動乱流がプラズマの輸送に重要な役割を果たしていると考えられている。そこで、ITG乱流を取り扱うことができるグローバルランダウ流体コードに、プラズマ端での密度ソースを温度の方程式におけるシンク(コールドパルス)として実装し、コールドパルスがITG乱流および乱流から駆動される帯状流に及ぼす影響を調べた。シミュレーションによれば、コールドパルスによりプラズマ端領域のITG乱流は強められ、その結果、帯状流のGAM振動が駆動された。
福田 祐仁
no journal, ,
高強度レーザーと物質の相互作用によってプラズマ中に作り出される加速電場は、従来型高周波加速器の加 速電場をはるかに超える。したがって、この電場勾配を利用することで、従来型加速器を凌駕する超小型 の「レーザー加速器」を実現することが可能である。我々は、クラスターターゲットを用いたレーザー駆動イオン 加速が、従来の固体薄膜ターゲットを用いた手法の約10倍の加速効率を有することを発見し、これまでに核子あたり50MeV/nを超えるヘリウムイオンの加速に成功した。この革新的なレーザー駆動イオン加速手法の最新の研究成果、及び、レーザー駆動イオン加速技術の放射線物理研究への適用に関する展望について報告する。
深谷 有喜; 望月 出海*; 前川 雅樹; 和田 健*; 兵頭 俊夫*; 松田 巌*; 河裾 厚男
no journal, ,
シリセンはグラフェンのシリコン版であり、理論的にはグラフェンとは異なる物性の発現も期待される新物質である。シリセン自体は自然界に存在しないため、これまでその合成が試みられていた。最近Ag(111)表面上での合成が報告され、シリセンの物性の実験的な検証が精力的に行われている。理論的にはシリセンのバックリングの大きさに依存することが予想されているが、原子配置は実験的に決定されていなかった。本研究では、全反射高速陽電子回折(TRHEPD)法を用いて、Ag(111)表面上のシリセンからのロッキング曲線を測定し、動力学的回折理論に基づく強度解析を行った。各層間隔をパラメータとして最適化を行った結果、シリセンのバックリングの大きさに関しては、0.83Aと決定した。この値は理論的予測と0.05Aの誤差範囲内で一致する。したがって、シリセンはグラフェンとは異なり、バックリングした構造を形成することが確かめられた。
Pirozhkov, A. S.; 神門 正城; Esirkepov, T. Z.; Pikuz, T. A.; Faenov, A. Ya.*; 小倉 浩一; 林 由紀雄; 小瀧 秀行; Ragozin, E. N.*; Neely, D.*; et al.
no journal, ,
In recent experiments we discovered bright off-axis harmonics carrying the pulse energy of up to 50 nJ (
photons) in the 60-100 eV spectral region, which is one of the best results achieved with compact coherent X-ray sources. We measured the angular divergence. High-resolution images reveal that the harmonics are emitted from two point-like regions with size smaller than a micron, which was predicted by our relativistic electron spikes model.
竹田 幸治; 斎藤 祐児; 岡根 哲夫; 山上 浩志; 松田 達磨*; 山本 悦嗣; 芳賀 芳範; 大貫 惇睦*; Fisk, Z.
no journal, ,
UCoAlは温度T=15K以下で、磁場H=1T以上で常磁性状態から磁場誘起強磁性状態へのメタ磁性転移を示す。磁気コンプトン散乱(MCS)実験において、メタ磁性転移に伴いスピン磁気モーメント(MS)の増大が観測される。一方で、MCSの磁場依存性測定からはMSはH=3Tで消失する様子が観測されている。この原因は判然としておらず、元素ごとの磁性の研究が望まれていた。そこで本研究では、軟X線内殻吸収磁気円二色性(XMCD)により、UとCo元素に対して元素選択磁化測定を行った。XMCDスペクトル形状からは、UとCoのMSは互いに逆の方向を向いていることが分かり、XMCD強度の磁場依存性からは、磁気モーメントの磁場に対する増加率はUの方がCoよりも大きいことが分かった。以上のことによりMCS実験でのMSの消失に対して定性的な説明を与えることができた。さらにXMCD強度の詳細な温度依存性も測定し、磁場依存性だけでなく温度依存性についても元素ごとに異なる振る舞いを示していることが明らかになった。
の局所構造米田 安宏; 小原 真司*; Fu, D.*
no journal, ,
ニオブ系ペロブスカイトの一つであるNaNbO
は
サイトにアルカリ金属のナトリウムを含んでいる。アルカリ金属酸化物の潮解性のため、合成が困難な強誘電体であったが、近年はこの問題も克服されつつあり、良質のサンプルが合成されるようになった。そこで、NaNbO
の相転移を再確認するため、局所構造解析の一つである2体相関分布関数法(PDF)を用いた構造解析を行った。通常、強誘電体の構造相転移では、転移点近傍で局所構造はほとんど変化しない。しかし、NaNbO
においては明瞭な局所構造の変化が見られており、相転移機構を考察中である。
山本 悦嗣; 芳賀 芳範; 立岩 尚之; 池田 修悟*; 酒井 宏典; 山村 朝雄*; Fisk, Z.
no journal, ,
斜方晶のジカルコゲナイドUSX(X=S, Se, Te)では原子番号が大きくなるにしたがい、半導体から金属まで伝導度が変化し、これに伴い磁性も常磁性から強磁性に変化する。このなかで
-US
は低温において狭いギャップを持つ半導体であるが、そのギャップは磁場や圧力などに非常に敏感であり、7T程度の磁場や8GPa程度の圧力で6桁以上も電気抵抗が減少し、金属的な振る舞いを示す。一方、この磁気抵抗効果には、磁気ポーラロンの形成が関与していると考えられることが磁化測定からわかっている。今回、我々は
-US
について磁場中での比熱を測定した。8Tの磁場下では低温での比熱が抑制され、磁気ポーラロンによる比熱の寄与が失われており、磁化測定結果とコンシステントである。一方、高温側での結晶場に起因する磁気比熱にもわずかに変化が見られた。
山極 満; 長谷川 登; 錦野 将元; 富田 卓朗*; 江山 剛史*; 柿本 直也*; 大西 直文*; 羽富 大紀*; 伊藤 篤史*; 南 康夫*; et al.
no journal, ,
「フェムト秒レーザー照射によるアブレーション」の解明を目指して、物質表面の計測に最適な軟X線(波長13.9nm)をプローブ光として、時間分解反射イメージング及び干渉計測を行っている。現在までに、フェムト秒レーザーが照射された直後に「表面から剥離した薄膜状の膨張フロント」がその形状を保ちつつ、膨張していく過程を明らかにしてきた。今回は、同じ時間帯において干渉計測を行うことで、膨張フロントの下方に存在する固体溶融面の膨張過程の観測に成功した。講演においては、これら固体溶融面と膨張フロントの時間発展について論議する。
大沼 悠一; 安立 裕人; 前川 禎通
no journal, ,
強磁性体において熱流がスピン流を生成するスピンゼーベック効果が盛んに研究されている。近年、強磁性体のイットリウム鉄ガーネットと常磁性金属の接合系に温度勾配を与え磁化ダイナミクスの緩和を測定すると、スピン軌道相互作用の大きな常磁性金属を使った際に、熱や熱流からの効果だけでは説明できない寄与が存在することが報告された。本研究では、この熱や熱流を起源としない磁化ダイナミクスの緩和変調を理論的に解明するために、強磁性体と常磁性金属の接合系に温度勾配を与えた際の強磁性共鳴の緩和項を理論的に解析する。特に、この緩和変調が、接合した常磁性金属のスピン軌道相互作用の大きさに依存することに着目し、スピンゼーベック効果を通して生成されたスピン流による磁化ダイナミクスの緩和変調を調べ、実験の理論的説明及び温度依存性の解明を試みる。
中堂 博之; 小野 正雄; 針井 一哉; 松尾 衛; 家田 淳一; 春木 理恵; 岡安 悟; 安岡 弘志; 前川 禎通; 齊藤 英治
no journal, ,
物体の回転運動によって生じる磁場(バーネット磁場)を核磁気共鳴(NMR)法を用いて観測した。磁気共鳴法を用いてバーネット磁場を観測する際に重要なことは、回転する試料と同じ角速度で回転する座標系から磁気共鳴を観測することである。この理由は、試料だけを回転した場合には試料と信号検出部(NMRコイル)に相対運動があるためにドップラー効果が生じ、回転する物体中の本来のNMR周波数を測定できないからである。これを克服するために、ワイアレス共振回路技術を応用し、NMRコイルを試料と同じ角速度で回転する方法(コイル回転法)を考案した。測定には鋭い共鳴線が得られる非磁性、絶縁体中の
Li(LiF),
F(LiF),
Na(NaCl),
In(InP),
Si(Si),
Sn(SnO
)を用いた。すべての核種において、回転数に比例してNMR共鳴線がシフトすることがわかった。
長谷川 登; 錦野 将元; 富田 卓朗*; 江山 剛史*; 柿本 直也*; 羽富 大紀*; 大西 直文*; 伊藤 篤史*; 南 康夫*; 武井 亮太*; et al.
no journal, ,
光と固体の相互作用の初期過程である「フェムト秒レーザー照射によるアブレーション」の解明を目指して、物質表面の計測に最適な軟X線(波長13.9nm)をプローブ光とした時間分解計測を行っている。フェムト秒レーザーが照射されたサンプル表面を軟X線プローブにより干渉計測及び反射イメージング計測を行い、金属のアブレーション過程を数ピコ秒から数百ナノ秒に渡って観測することに成功している。本件では、フェムト秒レーザーがサンプルに照射された直後に「表面から剥離された薄膜状の膨張フロント」と基板の間での干渉現象(ニュートンリング)や膨張フロントの軟X線シャドウグラフ計測を用いたアブレーションダイナミクスの計測結果とその物質依存性について紹介する。
安岡 弘志; Koutroulakis, G.*; Bauer, E. D.*; Mitchell, J. N.*; Tobash, P. H.*; Thompson, J. D.*; 中堂 博之; 酒井 宏典
no journal, ,
NQR測定法を用いて、Pu115系化合物超伝導体(PuCoIn
; Tc=2.3K, PuRhIn
; Tc=1.6K and PuCoGa
; Tc=18.5k)に対して行った研究を発表する。InまたはGaサイトにおけるNQR周波数と核磁気緩和時間の温度依存性を広い温度領域において高精度で測定した。観測量と重い電子系超伝導体に対する既存の理論(反強磁性的スピン揺らぎ,価数揺らぎ。複合対理論)を比較し、それらの物質における常伝導状態と超伝導状態の普遍的性質を議論する。
神野 智史; 福田 祐仁; 榊 泰直; 余語 覚文; 金崎 真聡; 近藤 公伯; Faenov, A. Ya.*; Skobelev, I. Yu.*; Pikuz, T. A.; Boldarev, A. S.*; et al.
no journal, ,
レーザー駆動イオン加速実験のターゲットに用いるクラスターの特性をミー散乱を利用して評価した。CO
/HeまたはCO
/H
の混合ガスを特別なノズルを通して真空中に噴射し、CO
クラスターを生成した。そこへ、Nd:YAGレーザーの第二高調波である532nmのパルスレーザーを照射し、クラスターからの散乱光の角度分布を測定した。この結果の数値解析からサブミクロンサイズのCO
クラスターが生成されていることを初めて明らかにした。その他に、クラスターの密度、全ガス密度を評価した。講演では、これらの結果とBoldarevモデルによる計算結果とを比較する。また、現在進めている冷凍機で冷却されたノズルを用いた水素クラスターターゲット生成についての状況を報告する。