※ 半角英数字
 年 ~ 
検索結果: 8 件中 1件目~8件目を表示
  • 1


Initialising ...



Initialising ...


Initialising ...


Initialising ...


Initialising ...


Initialising ...


Initialising ...


Initialising ...



Layer-number-independent two-dimensional ferromagnetism in Cr$$_3$$Te$$_4$$

Wang, Y.*; 梶原 駿*; 松岡 秀樹*; Saika, B. K.*; 山神 光平*; 竹田 幸治; 和達 大樹*; 石坂 香子*; 岩佐 義宏*; 中野 匡規*

Nano Letters, 22(24), p.9964 - 9971, 2022/12

 被引用回数:2 パーセンタイル:59.72(Chemistry, Multidisciplinary)

In a conventional magnetic material, a long-range magnetic order develops in three dimensions, and reducing a layer number weakens its magnetism. Here we demonstrate anomalous layer-number-independent ferromagnetism down to the two-dimensional (2D) limit in a metastable phase of Cr$$_3$$Te$$_4$$. We fabricated Cr$$_3$$Te$$_4$$ thin films by molecular-beam epitaxy and found that Cr$$_3$$Te$$_4$$ could host two distinct ferromagnetic phases characterized with different Curie temperatures ($$T_mathrm{C}$$). One is the bulk-like high-$$T_mathrm{C}$$ phase showing room-temperature ferromagnetism, which is consistent with previous studies. The other is the metastable low-$$T_mathrm{C}$$ phase with $$T_mathrm{C}$$ $${approx}$$ 160 K, which exhibits a layer-number-independent $$T_mathrm{C}$$ down to the 2D limit in marked contrast with the conventional high-$$T_mathrm{C}$$ phase, demonstrating a purely 2D nature of its ferromagnetism. Such significant differences between two distinct phases could be attributed to a small variation in the doping level, making this material attractive for future ultracompact spintronics applications with potential gate-tunable room-temperature 2D ferromagnetism.


Spin-orbit-induced Ising ferromagnetism at a van der Waals interface

松岡 秀樹*; Barnes, S. E.*; 家田 淳一; 前川 禎通; Bahramy, M. S.*; Saika, B. K.*; 竹田 幸治; 和達 大樹*; Wang, Y.*; 吉田 訓*; et al.

Nano Letters, 21(4), p.1807 - 1814, 2021/02

 被引用回数:9 パーセンタイル:74.58(Chemistry, Multidisciplinary)

Magnetocrystalline anisotropy, a key ingredient for establishing long-range order in a magnetic material down to the two-dimensional (2D) limit, is generally associated with spin-orbit interaction (SOI) involving a finite orbital angular momentum. Here we report strong out-of-plane magnetic anisotropy without orbital angular momentum, emerging at the interface between two different van der Waals (vdW) materials, an archetypal metallic vdW material NbSe$$_{2}$$ possessing Zeeman-type SOI and an isotropic vdW ferromagnet V$${}_5$$Se$${}_8$$. We found that the Zeeman SOI in NbSe$$_{2}$$ induces robust out-of-plane magnetic anisotropy in V$$_{5}$$Se$$_{8}$$ down to the 2D limit with a more than 2-fold enhancement of the transition temperature. We propose a simple model that takes into account the energy gain in NbSe$$_{2}$$ in contact with a ferromagnet, which naturally explains our observations. Our results demonstrate a conceptually new magnetic proximity effect at the vdW interface, expanding the horizons of emergent phenomena achievable in vdW heterostructures.


Stacking fault driven phase transformation in CrCoNi medium entropy alloy

He, H.*; Naeem, M.*; Zhang, F.*; Zhao, Y.*; Harjo, S.; 川崎 卓郎; Wang, B.*; Wu, X.*; Lan, S.*; Wu, Z.*; et al.

Nano Letters, 21(3), p.1419 - 1426, 2021/02

 被引用回数:28 パーセンタイル:94.57(Chemistry, Multidisciplinary)

In CrCoNi, a so-called medium-entropy alloy, an fcc-to-hcp phase transformation has long been anticipated. Here, we report an in situ loading study with neutron diffraction, which revealed a bulk fcc-to-hcp phase transformation in CrCoNi at 15 K under tensile loading. By correlating deformation characteristics of the fcc phase with the development of the hcp phase, it is shown that the nucleation of the hcp phase was triggered by intrinsic stacking faults. The confirmation of a bulk phase transformation adds to the myriads of deformation mechanisms available in CrCoNi, which together underpin the unusually large ductility at low temperatures.


Direct imaging of current-induced antiferromagnetic switching revealing a pure thermomagnetoelastic switching mechanism in NiO

Meer, H.*; Schreiber, F.*; Schmitt, C.*; Ramos, R.*; 齊藤 英治; Gomonay, O.*; Sinova, J.*; Baldrati, L.*; Kl$"a$ui, M.*

Nano Letters, 21(1), p.114 - 119, 2021/01

 被引用回数:45 パーセンタイル:97.51(Chemistry, Multidisciplinary)

We unravel the origin of current-induced magnetic switching of insulating antiferromagnet/heavy metal systems. We utilize concurrent transport and magneto-optical measurements to image the switching of antiferromagnetic domains in specially engineered devices of NiO/Pt bilayers. Different electrical pulsing and device geometries reveal different final states of the switching with respect to the current direction. We can explain these through simulations of the temperature-induced strain, and we identify the thermomagnetoelastic switching mechanism combined with thermal excitations as the origin, in which the final state is defined by the strain distributions and heat is required to switch the antiferromagnetic domains. We show that such a potentially very versatile noncontact mechanism can explain the previously reported contradicting observations of the switching final state, which were attributed to spin-orbit torque mechanisms.


Intrinsic 2D ferromagnetism in V$$_{5}$$Se$$_{8}$$ epitaxial thin films

中野 匡規*; Wang, Y.*; 吉田 訓*; 松岡 秀樹*; 真島 裕貴*; 池田 啓祐*; 平田 靖透*; 竹田 幸治; 和達 大樹*; 小濱 芳允*; et al.

Nano Letters, 19(12), p.8806 - 8810, 2019/12

 被引用回数:46 パーセンタイル:91.35(Chemistry, Multidisciplinary)

The discoveries of intrinsic ferromagnetism in atomically thin van der Waals crystals have opened a new research field enabling fundamental studies on magnetism at two-dimensional (2D) limit as well as development of magnetic van der Waals heterostructures. Here we demonstrate that V$$_{5}$$Se$$_{8}$$ epitaxial thin films grown by molecular-beam epitaxy exhibit emergent 2D ferromagnetism with intrinsic spin polarization of the V 3d electrons although the bulk counterpart is originally antiferromagnetic. Moreover, thickness-dependence measurements reveal that this newly developed 2D ferromagnet could be classified as an itinerant 2D Heisenberg ferromagnet with weak magnetic anisotropy.


In situ SR-XPS observation of Ni-assisted low-temperature formation of epitaxial graphene on 3C-SiC/Si

長谷川 美佳*; 菅原 健太*; 須藤 亮太*; 三本菅 正太*; 寺岡 有殿; 吉越 章隆; Filimonov, S.*; 吹留 博一*; 末光 眞希*

Nanoscale Research Letters, 10, p.421_1 - 421_6, 2015/10

 被引用回数:12 パーセンタイル:50.73(Nanoscience & Nanotechnology)



Role of liquid indium in the structural purity of wurtzite InAs nanowires that grow on Si(111)

Biermanns, A.*; Dimakis, E.*; Davydok, A.*; 佐々木 拓生; Geelhaar, L.*; 高橋 正光; Pietsch, U.*

Nano Letters, 14(12), p.6878 - 6883, 2014/12

 被引用回数:27 パーセンタイル:73.34(Chemistry, Multidisciplinary)

The dynamic relation between the growth conditions and the structural composition of the catalyst-free InAs nanowires was investigated using time-resolved X-ray scattering and diffraction measurements during the growth by molecular beam epitaxy. A spontaneous build-up of liquid indium is directly observed in the beginning of the growth process and associated with the simultaneous nucleation of InAs nanowires predominantly in the wurtzite phase. After their nucleation, the nanowires grow in the absence of liquid indium, and with a highly defective wurtzite structure. A pathway to pure wurtzite nanowires is presented through this work.


Multiterminal nanowire junctions of silicon; A Theoretical prediction of atomic structure and electronic properties

Avramov, P.; Chernozatonskii, L. A.*; Sorokin, P. B.*; Gordon, M. S.*

Nano Letters, 7(7), p.2063 - 2067, 2007/07

 被引用回数:13 パーセンタイル:52.05(Chemistry, Multidisciplinary)


8 件中 1件目~8件目を表示
  • 1