Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
寺阪 祐太; 渡辺 賢一*; 瓜谷 章*; 山崎 淳*; 佐藤 優樹; 鳥居 建男; 若井田 育夫
Proceedings of International Youth Nuclear Congress 2020 (IYNC 2020) (Internet), 4 Pages, 2020/05
For the application in the measurement of the high dose rate hot spots inside the Fukushima Daiichi Nuclear Power Station buildings, we propose a wavelength-resolved type one-dimensional radiation distribution sensing method using plastic scintillating fiber (PSF). The proposing method estimates the incident position of radiation to the PSF by the unfolding of the wavelength spectrum output from the fiber edge using the fact that the attenuation length of scintillating light depends on the wavelength. By measuring the response function in advance, which defined as the wavelength spectrum measured at the fiber edge by the spectrometer with every transmission distance, the spectrum which can obtain when measured a certain radiation distribution can be expressed as the convolution of the response function. This method can avoid the problem of chance coincidence effect and signal pile-up, which occurs in the radiation detector with pulse counting mode under high dose rate field because this method measures the integrated light intensity. Through basic experiment using the ultraviolet irradiation source and Sr point source, basic properties of inverse estimation of irradiated position were confirmed, which showed that source position was reasonably estimated using the response function which obtained by the ultraviolet irradiation source in advance.
北山 佳治; 寺阪 祐太; 佐藤 優樹; 鳥居 建男
Proceedings of International Youth Nuclear Congress 2020 (IYNC 2020) (Internet), 4 Pages, 2020/05
At the Fukushima Daiichi Nuclear Power Station (FDNPS), various works are under-way for decommissioning. Depending on work places, there are radioactive hotspot. Therefore measuring the position of the hotspot in advance is important for safety of the worker. The system that can easily measure the dose rate distribution in work place has been demanded. There are two methods for imaging a dose rate distribution: a pinhole camera and a Compton camera. A pinhole camera can determine direction of radiation source in one event, but the weight becomes heavy because a shield is required. On the other hand, since the Compton camera does not require a shield, it can be reduced in the size and weight. However, Compton imaging method generate many ghosts of cone traces, which reduce the signal-to-noise ratio. We propose a new gamma-ray imager that works like a pinhole camera without a shield. This is achieved by arranging directional gamma ray detectors that does not require a shield. In this work, we have performed principle verification of a directional gamma-ray detector that is a basic component of the new gamma-ray imager by using Geant4 Monte Carlo simulation.
佐藤 優樹; 鳥居 建男
Proceedings of International Youth Nuclear Congress 2020 (IYNC 2020) (Internet), 4 Pages, 2020/05
The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., suffered a meltdown as a result of a large tsunami triggered by the Great East Japan Earthquake on March 11, 2011. We have been conducting demonstration tests for detection of radioactive hotspots inside the FDNPS buildings using a Compton camera, a kind of gamma-ray imager. In this work, we introduced the 3D visualization of radioactive substances by using combination of the Compton camera and optical camera based on Structure from Motion (SfM). By taking photographs of the experimental environment while freely moving, a 3D structural model of the environment can be reconstructed from the multiple photographs, and the movement trajectory of the optical camera can be estimated simultaneously using the SfM. Furthermore, the radioactive substances can be visualized by drawing an image of the radioactive substances on the 3D structural model using gamma-ray data acquired by the Compton camera. In the demonstration, we succeeded in visualizing a Cs-radiation source on the 3D structural model of the experimental environment while freely moving these devices. This technology is useful for making it easy to recognize radioactive substances in decommissioning work site such as the FDNPS.