Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shinto, Katsuhiro; Okoshi, Kiyonori; Shibata, Takanori*; Nammo, Kesao*; Kawai, Isao*; Ikegami, Kiyoshi*; Ueno, Akira
Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.525 - 528, 2024/10
A decade has elapsed since the radio frequency (RF)-driven negative hydrogen (H) ion source initiated operation at J-PARC. In the 2023/2024 campaign, a single RF-driven H
ion source has generated H
beams with a beam current of 60 mA, which enabled the J-PARC linac to inject them into the 3 GeV rapid cycling synchrotron (RCS) with a beam current of 50 mA. The continuous operation time of the ion source reached exceeding 4,900 hours in this campaign, which signifies a notable enhancement in operational longevity in comparison to the preceding longest campaign in 2022/2023, which spanned 4,412 hours. This paper provides the operational status of the RF-driven H
ion source during this campaign and the current status of the J-PARC-made antenna, which is currently under development.
Tsuchida, Hidetsugu*; Tezuka, Tomoya*; Kai, Takeshi; Matsuya, Yusuke*; Majima, Takuya*; Saito, Manabu*
Journal of Chemical Physics, 161(10), p.104503_1 - 104503_8, 2024/09
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Although fast ion beams can damage DNA by chemical products such as secondary electrons produced by their interaction with water in living cells, the process of formation of these chemical products in the Bragg peak region used in particle therapy is not fully understood. To investigate this process, we performed experiments to evaluate the yields of radiolytic products produced when a liquid water jet in vacuum is irradiated with a MeV-energy carbon beam. In addition, ionization processes in water due to incident ions and secondary electrons were simulated using a radiation transport Monte Carlo code. The results indicated that the primary source of ionization in water is secondary electrons. Finally, we show that these elementary processes contribute to the development of radiation biophysics and biochemistry to study the formation mechanism of DNA damage.
Shibata, Takanori*; Okoshi, Kiyonori; Ueno, Akira; Ikegami, Kiyoshi*; Shinto, Katsuhiro; Nammo, Kesao*; Kawai, Isao*; Oguri, Hidetomo
Kasokuki, 21(2), p.94 - 100, 2024/07
In the recent J-PARC user operation from Nov. 10th, 2022 to Jun. 22nd, 2023, continuous operation of 4,412 hours with hydrogen negative ion (H ion) beam current up to 60 mA was achieved by J-PARC radio frequency (RF) H
ion source. This was also the first time to supply H
ion beam to the linac in the yearly J-PARC user operation term by a single ion source (w/o ion source exchange). To satisfy the requirements of the further upgrade in J-PARC, a soundness evaluation of the present ion source components has been performed. Furthermore, the RF ion source with a newly manufactured RF antenna coil has been under development.
Shibata, Takanori*; Shinto, Katsuhiro; Nakano, Haruhisa*; Hoshino, Kazuo*; Miyamoto, Kenji*; Okoshi, Kiyonori; Nammo, Kesao*; Ikegami, Kiyoshi*; Kawai, Isao*; Oguri, Hidetomo; et al.
Journal of Physics; Conference Series, 2743, p.012007_1 - 012007_5, 2024/05
Times Cited Count:0 Percentile:0.00(Physics, Particles & Fields)Oscillation of the negative hydrogen ion (H) beam phase space in Radio Frequency (RF) ion source is investigated by a simple 3D Particle-In-Cell (PIC) model which takes into account the transport processes of electron, proton and H
in the extraction region. The calculation domain is in vicinity of the single beam aperture in J-PARC ion source configuration. In order to understand relation between the plasma density oscillation and the extracted H
beam characteristics, the input electron and proton fluxes from the driver region are varied parametrically with the 1st and the 2nd harmonics of the J-PARC RF frequency (2 or 4 MHz). The numerical results give an idea to the main physical processes between the oscillations of the plasma parameters and the extracted H
ion trajectories in the different RF phases. Countermeasures to reduce the oscillation mechanisms are also discussed in the presentation.
Shinto, Katsuhiro; Shibata, Takanori*; Okoshi, Kiyonori; Nammo, Kesao*; Kawai, Isao*; Ikegami, Kiyoshi*
Journal of Physics; Conference Series, 2743, p.012023_1 - 012023_5, 2024/05
Times Cited Count:0 Percentile:0.00(Physics, Particles & Fields)We have been conducting the test of a new J-PARC-made internal antenna for the J-PARC RF-driven cesiated H ion source. After the development of the first J-PARC-made antenna, the composition of the porcelain enamel coating of the antenna was changed because we were afraid of the outgassing of the impurities from the previous antenna coating. During the test of high-density plasma production by the new antenna, we monitored the outgassing characteristics of the new antenna by measuring mass spectrometry and optical spectrum analysis. It is confirmed that no remarkable impurities were emitted from the new antenna. We also carried out the H
beam extraction and measured the H
beam characteristics by using the new antenna. It is found that the emittances of the H
beam extracted from the J-PARC RF-driven cesiated H
ion source by using the new antenna were similar to those in the case by using the SNS-made antenna. To accelerate the endurance test of the new antenna, we applied the antenna for the high-density plasma production to the 5% duty factor (1 ms pulse width with 50 Hz repetition rate) with the 2 MHz RF input power of approximately 60 kW, whose values were much higher than those in the J-PARC nominal operation; 0.8 ms pulse width with 25 Hz repetition rate (the duty factor of 2%) with the RF input power of approximately 30 kW. This presentation shows the results of the characteristics of the new J-PARC-made antenna and discusses the feasibility of the new antenna for use in the J-PARC accelerator operation.
Okazaki, Hiroyuki*; Idesaki, Akira*; Koshikawa, Hiroshi*; Matsumura, Daiju; Ikeda, Takashi*; Yamamoto, Shunya*; Yamaki, Tetsuya*
Journal of Physical Chemistry C, 127(49), p.23628 - 23633, 2023/12
Times Cited Count:1 Percentile:10.57(Chemistry, Physical)Harii, Kazuya*; Umeda, Maki; Arisawa, Hiroki*; Hioki, Tomosato*; Sato, Nana; Okayasu, Satoru; Ieda, Junichi
Journal of the Physical Society of Japan, 92(7), p.073701_1 - 073701_4, 2023/07
Times Cited Count:1 Percentile:23.32(Physics, Multidisciplinary)Kabumoto, Hiroshi; Nakagawa, Sohei; Matsuda, Makoto
JAEA-Conf 2022-002, 146 Pages, 2023/03
"The 34th Meeting for Tandem Accelerators and their Associated Technologies" was held on July 21-22, 2022 organized by Nuclear Science Research Institute of the Japan Atomic Energy Agency. This meeting was held only on-line for preventing the spread of COVID-19 infection. The purpose of this meeting is contribution of development for related technology and of management of facilities through exchange of information among the researchers and engineers using and operating electrostatics accelerator facilities like tandem accelerators. There were 25 presentations which contains current status report of facility, technical development of accelerator, research of application. The total number of participants was a hundred, from 26 universities, research organizations and industries. This meeting consisted of only oral session, a poster session was not carried out because of on-line meeting. This proceeding compiles the contents of report papers in the meeting.
Nii, Keisuke*; Ida, Yoshiaki*; Ueda, Hideki*; Yamaguchi, Takanori*; Kabumoto, Hiroshi; Kamiya, Junichiro; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; et al.
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.601 - 604, 2023/01
no abstracts in English
Kabumoto, Hiroshi; Matsuda, Makoto; Nakamura, Masahiko; Ishizaki, Nobuhiro; Kutsukake, Kenichi; Otokawa, Yoshinori; Asozu, Takuhiro; Matsui, Yutaka; Nakagawa, Sohei; Abe, Shinichi
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1109 - 1113, 2023/01
no abstracts in English
Tsuchida, Hidetsugu*; Majima, Takuya*; Kai, Takeshi
Oyo Butsuri, 91(9), p.553 - 557, 2022/09
In recent years, basic research has been conducted to understand the biological effects of radiation at the atomic level toward advancing particle beam cancer treatment. Here we show some recent results on the basic process of biomolecular damage caused by ion beams in liquid water. A biomolecular solution target was introduced to the vacuum by a liquid molecular beam or microdroplet method. Secondary ion mass spectrometry was applied to measure the fragments of biomolecules emitted from a target irradiated with an ion beam. For the simulation study using a PHITS code, physical nature of secondary electrons produced by ion beam in water was analyzed. The experimental and simulation research determined the energy range of secondary electrons involved in damaging biomolecules in liquid water caused by ion beams. The damage process by secondary electrons near the ion track is described.
Shinto, Katsuhiro; Shibata, Takanori*; Wada, Motoi*
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.230 - 233, 2021/10
In most proton accelerator facilities such as J-PARC, SNS, CERN, a H ion source equipped with a 2-MHz rf driver for plasma generation produces H
beams. We have reported H
beam characteristics extracted from the J-PARC rf-driven high-intensity H
ion source. We have been developing an emittance measurement apparatus equipped with a highly time-resolved data acquisition system in order to observe fluctuation of the beam emittance in association with the frequency of the rf driver. By using this apparatus, we found that the beam emittance is fluctuated with the frequency with the rf driver and higher harmonics. We will show some obtained results of the emittance fluctuation.
Shibata, Takanori*; Shinto, Katsuhiro; Wada, Motoi*; Oguri, Hidetomo; Ikegami, Kiyoshi*; Okoshi, Kiyonori; Nammo, Kesao*
AIP Conference Proceedings 2373, p.050002_1 - 050002_9, 2021/08
Oscillation of emittance and Twiss parameters in the negative ion beam from the J-PARC 2-MHz RF ion source is measured by applications of a double-slit emittance monitor located at the RFQ (Radio Frequency Quadrupole) entrance. The emittance monitor is equipped with a newly-developed 60 MS/s data acquisition system, so that beam current oscillation in a few MHz can be observed with enough time resolution. From the measurement, it is shown that the beam phase space consists of (1) a DC component in the beam core, (2) a 2-MHz oscillating component which takes place both in the beam core and the halo and (3) a doubled RF frequency (4 MHz) oscillation which slightly exists in the beam halo. The major component is the 2-MHz component, which resultantly decides the beam emittance oscillation frequency. A typical value of the beam emittance in the present experiment is 0.34 mm-mrad, while the amplitude of the 2 MHz oscillation is around 0.04
mm-mrad. The results indicate that the high-frequency oscillation component occupying about ten-percent of the beam from the RF source travels a few meters passing through a magnetic lens focusing system.
Shibata, Takanori*; Ikegami, Kiyoshi*; Nammo, Kesao*; Liu, Y.*; Otani, Masashi*; Naito, Fujio*; Shinto, Katsuhiro; Okoshi, Kiyonori; Okabe, Kota; Kondo, Yasuhiro; et al.
JPS Conference Proceedings (Internet), 33, p.011010_1 - 011010_6, 2021/03
Together with the intensity upgrade in J-PARC Linac Front-End, improvement of RFQ transmission ratio is an important task. This RFQ transmission ratio depends strongly upon the solenoid current settings in the low energy beam transport line (LEBT). In the present study, high beam current cases (72 mA and 88 mA H beam current in LEBT) are investigated at a test-stand. Phase space distributions of the H
beam particles at the RFQ entrance are measured and compared with numerical results by Particle-In-Cell simulation. As a result, it has been clarified that a 15 mm
orifice for differential pumping of H
gas coming from the ion source plays a role as a collimator in these beam conditions. This leads to change the beam emittance and Twiss parameters at the RFQ entrance. Especially in the condition with the beam current up to 88 mA in LEBT, the beam collimation contributes to optimize the phase space distribution to the RFQ acceptance with relatively low solenoid current settings. As a higher solenoid current setting would be necessary to suppress the beam expansion due to high space charge effect, these results suggest that current-saving of the solenoids can be possible even in the higher beam intensity operations.
Kitamura, Akane; Ishikawa, Norito; Kondo, Keietsu; Yamamoto, Shunya*; Yamaki, Tetsuya*
Nuclear Instruments and Methods in Physics Research B, 460, p.175 - 179, 2019/12
Times Cited Count:3 Percentile:28.10(Instruments & Instrumentation)Irradiation at grazing incidence formed chains of multiple hillocks on the surface of strontium titanate (SrTiO) and titanium oxide (TiO
). They were observed with an atomic force microscope (AFM), however, the AFM measurement gives resolution errors in a nanometer order due to the curvature of the probe tip. To prevent these errors, a field emission scanning electron microscope (FE-SEM) would be a better option for observation. In this study, we performed SEM observations for the chains of the multiple hillocks. Single crystals of SrTiO
and TiO
were irradiated with 200 MeV
Xe
in the tandem accelerator at JAEA-Tokai. It was revealed that a lot of isolated hillocks were formed in a line on these surface. The diameter and the interval of those hillocks are discussed in comparison to AFM observation.
Sako, Hiroyuki; Aoki, Kazuya*
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.344 - 347, 2019/10
no abstracts in English
Harada, Hiroyuki; Saha, P. K.; Kinsho, Michikazu
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.179 - 182, 2019/07
Recently, humankind had big discovery about neutron star, which is great big nuclear in the space. They are discovery of neutron star with twice mass of solar in 2010 and observation of gravity wave when two neutron start incorporate in 2017. In order to understand the high dense matter like the neutron star, project of experimental researches by using accelerated heavy ion beams become heated in the world, such RHIC-BES-II program, FAIR project, NICA project, etc. The J-PARC provides MW class high intensity proton beams to many experiments and researches. We have study of the heavy ion beam in J-PARC to fully utilize high intensity ability of J-PARC. We propose the accelerator scheme of the beam in J-PARC and the intensity will reach to the world record. In our talk, we will report the current status of proton beam and the accelerator scheme for the high-intensity heavy ion beam in J-PARC.
Kitamura, Akane; Ishikawa, Norito; Kondo, Keietsu; Fujimura, Yuki; Yamamoto, Shunya*; Yamaki, Tetsuya*
Transactions of the Materials Research Society of Japan, 44(3), p.85 - 88, 2019/06
Swift heavy ions can create nanosized hillocks on the surfaces of various ceramics. When these materials are irradiated with swift heavy ions at normal incidence, each ion impact results in the formation of a single hillock on the surfaces. In contrast, irradiation at grazing incidence forms chains of multiple hillocks on the surface, for example, for strontium titanate (SrTiO). So far, chains of multiple hillocks have been investigated using atomic force microscopy (AFM). It should be noted that AFM measurements involve systematic errors of several nanometers due to the finite size of the probe tip. Consequently, it is possible that the image of one hillock may merge with that of a neighboring hillock even if the two hillocks are well separated. In contrast to AFM, field-emission scanning electron microscopy (FE-SEM) is a useful technique for obtaining higher-resolution images. In this study, we observed multiple nanohillocks on the surfaces of SrTiO
using FE-SEM. Crystals of SrTiO
(100) and 0.05 wt% Nb-doped SrTiO
(100) were irradiated with 350 MeV Xe ions, respectively, at grazing incidence, where the angle between the sample surface and the beam was less than 2
. On the SrTiO
surface, a chain of periodic nanohillocks is created along the ion path. In contrast, black lines accompanied by hillocks are observed on the Nb-doped SrTiO
surface.
Shinto, Katsuhiro; Okoshi, Kiyonori; Shibata, Takanori*; Nammo, Kesao*; Ikegami, Kiyoshi*; Takagi, Akira*; Namekawa, Yuya*; Ueno, Akira; Oguri, Hidetomo
AIP Conference Proceedings 2052, p.050002_1 - 050002_7, 2018/12
Times Cited Count:7 Percentile:93.83(Physics, Applied)In the 2017/2018 campaign, the J-PARC cesiated rf-driven negative hydrogen (H) ion source producing H
beam with the beam current of 47 mA accomplished three long-term operations more than 2,000 hours without any serious issues. On the final day of this campaign, the ion source produced an H
beam current of 72 mA so that the linac commissioning group could demonstrate the beam current of 60 mA at the linac exit. We are also conducting an endurance test of a J-PARC-made antenna at a test bench. The antenna achieved the operation time approximately 1,400 hours.
Yamaki, Tetsuya*; Nuryanthi, N.*; Kitamura, Akane; Koshikawa, Hiroshi*; Sawada, Shinichi*; Voss, K.-O.*; Severin, D.*; Tautmann, C.*
Nuclear Instruments and Methods in Physics Research B, 435, p.162 - 168, 2018/11
Times Cited Count:9 Percentile:61.01(Instruments & Instrumentation)We used individual single-ion tracks in fluoropolymers with diameters of tens to hundreds of nanometers; chemical etching and ion-track grafting enabled us to develop ion-track and proton-conductive membranes, respectively. In the ion-track membranes of PVDF, strongly-LET-dependent etching was found, so the pore shape as well as the size was exclusively controlled by the track structures. We performed the ion-track grafting of styrene into ETFE to develop nanostructure-controlled proton exchange membranes (PEMs) for applications in PEM fuel cells. Our ion beam technology to develop fluoropolymer-based nanostructures has the potential to apply in the field of filtration processes and fuel cell devices. This would make it possible to provide new microfiltration technology for water treatment, sterilization, petroleum refining and dairy processing.