Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 251

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Comprehensive understanding of hillocks and ion tracks in ceramics irradiated with swift heavy ions

Ishikawa, Norito; Taguchi, Tomitsugu*; Ogawa, Hiroaki

Quantum Beam Science (Internet), 4(4), p.43_1 - 43_14, 2020/12

Amorphizable ceramics were irradiated with 200 MeV Au ions, and the as-irradiated samples were observed by transmission electron microscopy (TEM). The ion track diameter and hillock diameter are similar for all the amorphizable ceramics. For SrTiO$$_{3}$$ and niobium-doped STO, 200 MeV Au ion irradiation and TEM observation were also performed. The ion track diameters in these materials are found to be markedly smaller than the hillock diameters. The ion tracks in these materials exhibit inhomogeneity, which is similar to that reported for non-amorphizable ceramics. On the other hand, the hillocks appear to be amorphous, and the amorphous feature is in contrast to the crystalline feature of hillocks observed in non-amorphizable ceramics. No marked difference is recognized between the nanostructures in STO and those in Nb-STO.

Journal Articles

Irradiation effects of swift heavy ions detected by refractive index depth profiling

Amekura, Hiroshi*; Li, R.*; Okubo, Nariaki; Ishikawa, Norito; Chen, F.*

Quantum Beam Science (Internet), 4(4), p.39_1 - 39_11, 2020/12

Evolution of depth profiles of the refractive index in Y$$_{3}$$Al$$_{5}$$O$$_{12}$$ (YAG) crystals were studied under 200 MeV Xe ion irradiation. The index changes were observed at three different depth regions; (i) a plateau near the surface between 0 and 3 $$mu$$m in depth, which can be ascribed to the electronic stopping Se, (ii) a broad peak at 6 $$mu$$m in depth, and (iii) a sharp dip at 13 $$mu$$m in depth, which is attributed to the nuclear stopping Sn peak.

Journal Articles

Relation between biomolecular dissociation and energy of secondary electrons generated in liquid water by fast heavy ions

Tsuchida, Hidetsugu*; Kai, Takeshi; Kitajima, Kensei*; Matsuya, Yusuke; Majima, Takuya*; Saito, Manabu*

European Physical Journal D, 74(10), p.212_1 - 212_7, 2020/10

 Times Cited Count:0 Percentile:100(Optics)

Fundamental study of interaction between biomolecules and heavy ions in water is very important to predict an initial stage of radiation biological effects. A heavy ion irradiation experiment into droplet target assumed as a biological system in a vacuum was performed to measure production yields of cations and anions for glycine, which was ejected from the droplet target to the vacuum. However, the production mechanisms have been unknown. The PHITS code adapting ion track structure mode was used to analyze the production mechanisms from the dose evaluation at the surface between the vacuum and the water. It is found that induction yields of ionization and excitation, and dissociative electron attachment involved in the secondary electrons were correlated with the production yields of cations and anions of the glycine. The results provide us newly scientific insights to predict an initial stage of radiation biological effects.

Journal Articles

Analysis of ion-irradiation induced lattice expansion and ferromagnetic state in CeO$$_{2}$$ by using Poisson distribution function

Yamamoto, Yuki*; Ishikawa, Norito; Hori, Fuminobu*; Iwase, Akihiro*

Quantum Beam Science (Internet), 4(3), p.26_1 - 26_13, 2020/09

The lattice constant and the magnetic state of CeO$$_{2}$$ are modified by the irradiation with 200 MeV Xe ions. Under the assumption that these modifications are induced in the narrow one-dimensional region (the ion track) along the ion beam path, the dependence of the lattice constant and the saturation magnetization of CeO$$_{2}$$ on the Xe ion fluence can be analyzed by using the Poisson distribution function. The analysis reveals that the lattice constant inside the ion track, which is larger than outside the ion track is not affected by the overlapping of the ion track. The present result implies that the Poisson distribution function is useful for describing the effect of ion track overlapping on the ion irradiation induced ferromagnetic state in CeO$$_{2}$$.

Journal Articles

Tolerance of spin-Seebeck thermoelectricity against irradiation by swift heavy ions

Okayasu, Satoru; Harii, Kazuya*; Kobata, Masaaki; Yoshii, Kenji; Fukuda, Tatsuo; Ishida, Masahiko*; Ieda, Junichi; Saito, Eiji

Journal of Applied Physics, 128(8), p.083902_1 - 083902_7, 2020/08

Journal Articles

Degradation prediction using displacement damage dose method for AlInGaP solar cells by changing displacement threshold energy under irradiation with low-energy electrons

Okuno, Yasuki*; Ishikawa, Norito; Akiyoshi, Masafumi*; Ando, Hirokazu*; Harumoto, Masaki*; Imaizumi, Mitsuru*

Japanese Journal of Applied Physics, 59(7), p.074001_1 - 074001_7, 2020/07

 Times Cited Count:0 Percentile:100(Physics, Applied)

Performance degradation prediction for space solar cells under irradiation with low-energy electrons is greatly affected by displacement threshold energy (Ed) when a displacement damage dose (DDD) model is used. According to recent studies, the Ed of P atoms is much lower than the conventional Ed value in InP-type solar cells irradiated with low-energy electrons. This indicates that the value of Ed typically used in DDD model leads to significant error in performance degradation prediction. In this study, degradation of AlInGaP solar cells is observed after irradiation with 60 keV electrons. The results suggest that the Ed of P atoms in AlInGaP solar cells is much smaller than the conventionally used Ed value. By using the DDD model with the Ed value obtained in this study, we demonstrated that the performance degradation predicted by the DDD model agrees well with the experimental results.

Journal Articles

Swift heavy ion irradiation to non-amorphizable CaF$$_{2}$$ and amorphizable Y$$_{3}$$Al$$_{5}$$O$$_{12}$$ (YAG) crystals

Amekura, Hiroshi*; Li, R.*; Okubo, Nariaki; Ishikawa, Norito; Chen, F.*

Nuclear Instruments and Methods in Physics Research B, 474, p.78 - 82, 2020/07

 Times Cited Count:3 Percentile:39.48(Instruments & Instrumentation)

Yttrium-aluminum-garnet (YAG) and calcium fluoride (CaF$$_{2}$$) were irradiated with 200 MeV Xe ions. YAG crystal was transformed to an amorphous phase, whereas CaF$$_{2}$$ shows the non-amorphizable nature. In spite of amorphization, YAG maintained its transparency, whereas CaF$$_{2}$$ markedly loses it transparency showing a broad absorption band centered at 550 nm.

Journal Articles

Matrix-material dependence on the elongation of embedded gold nanoparticles induced by 4 MeV C$$_{60}$$ and 200 MeV Xe ion irradiation

Li, R.*; Narumi, Kazumasa*; Chiba, Atsuya*; Hirano, Yu*; Tsuya, Daiju*; Yamamoto, Shunya*; Saito, Yuichi*; Okubo, Nariaki; Ishikawa, Norito; Pang, C.*; et al.

Nanotechnology, 31(26), p.265606_1 - 265606_9, 2020/06

 Times Cited Count:1 Percentile:100(Nanoscience & Nanotechnology)

We report the elongation of embedded Au nanoparticles (NPs) in three different matrices under irradiations of 4 MeV C$$_{60}$$ ions and 200 MeV Xe ions. Large elongation of Au NPs was observed for crystalline indium tin oxide (ITO) under both 4 MeV C$$_{60}$$ and 200 MeV Xe irradiation. The ITO layer preserved the crystallinity even after large elongation was induced. This is the first report of the elongation of metal NPs in a crystalline matrix.

Journal Articles

Changes in electronic structure of carbon supports for Pt catalysts induced by vacancy formation due to Ar$$^{+}$$ irradiation

Okazaki, Hiroyuki*; Kakitani, Kenta*; Kimata, Tetsuya*; Idesaki, Akira*; Koshikawa, Hiroshi*; Matsumura, Daiju; Yamamoto, Shunya*; Yamaki, Tetsuya*

Journal of Chemical Physics, 152(12), p.124708_1 - 124708_5, 2020/03

 Times Cited Count:0 Percentile:100(Chemistry, Physical)

Journal Articles

Strong flux pinning by columnar defects with directionally dependent morphologies in GdBCO-coated conductors irradiated with 80 MeV Xe ions

Sueyoshi, Tetsuro*; Kotaki, Tetsuya*; Furuki, Yuichi*; Fujiyoshi, Takanori*; Semboshi, Satoshi*; Ozaki, Toshinori*; Sakane, Hitoshi*; Kudo, Masaki*; Yasuda, Kazuhiro*; Ishikawa, Norito

Japanese Journal of Applied Physics, 59(2), p.023001_1 - 023001_7, 2020/02

 Times Cited Count:1 Percentile:52.74(Physics, Applied)

We show that Xe ion irradiation with 80 MeV to GdBa$$_{2}$$Cu$$_{3}$$Oy-coated conductors creates different morphologies of columnar defects (CDs) depending on the irradiation angles relative to the c-axis: continuous CDs with a larger diameter are formed for oblique irradiation at $$theta_{rm i}$$ = 45$$^{circ}$$, whereas the same ion beam at a different angle ($$theta_{rm i}$$ = 0$$^{circ}$$) induces the formation of discontinuous CDs. The direction-dependent morphologies of CDs significantly affect the angular behavior of the critical current density $$J_{rm c}$$.

Journal Articles

TEM analysis of ion-tracks and hillocks produced by swift heavy ions of different velocities in Y$$_{3}$$Fe$$_{5}$$O$$_{12}$$

Ishikawa, Norito; Taguchi, Tomitsugu*; Kitamura, Akane; Szenes, G.*; Toimil-Molares, M. E.*; Trautmann, C.*

Journal of Applied Physics, 127(5), p.055902_1 - 055902_7, 2020/02

 Times Cited Count:3 Percentile:19.61(Physics, Applied)

Hillock formation is one of the important aspects of radiation-induced modification of solid material. To our knowledge this is first result showing that the hillock formation in ceramics is affected by the velocity effect. The present result include Se-dependences of hillock dimensions based on precise measurement using TEM (transmission electron microscopy). The paper should be published to make researchers aware that hillock size is actually comparable to ion-track size in wide Se range. In addition, the results include important insight about the hillock formation mechanism of ceramics irradiated with swift heavy ions.

Journal Articles

Structure analysis of the defects generated by a thermal spike in single crystal CeO$$_{2}$$; A Molecular dynamics study

Sasajima, Yasushi*; Ajima, Naoki*; Kaminaga, Ryuichi*; Ishikawa, Norito; Iwase, Akihiro*

Nuclear Instruments and Methods in Physics Research B, 440, p.118 - 125, 2019/02

In the present paper, we have extensively analyzed the atomic structures generated by supplying a thermal spike to the single crystal CeO$$_{2}$$. Our analysis results were compared with the atomic structures obtained by the microscope experiments. Our simulation reproduced the distribution of the numbers of oxygen atoms obtained from the analysis of microscope images. We found that the number of vacancies was increased abruptly immediately after the thermal spike, and the number subsequently dropped through a relaxation process within 3 ps.

Journal Articles

X-ray absorption study of platinum nanoparticles on an ion-irradiated carbon support

Kakitani, Kenta*; Kimata, Tetsuya*; Yamaki, Tetsuya*; Yamamoto, Shunya*; Matsumura, Daiju; Taguchi, Tomitsugu*; Terai, Takayuki*

Radiation Physics and Chemistry, 153, p.152 - 155, 2018/12

 Times Cited Count:1 Percentile:79.08(Chemistry, Physical)

Journal Articles

Ag nanoparticles embedded in Nd:YAG crystals irradiated with tilted beam of 200 MeV Xe ions; Optical dichroism correlated to particle reshaping

Li, R.*; Pang, C.*; Amekura, Hiroshi*; Ren, F.*; H$"u$bner, R.*; Zhou, S.*; Ishikawa, Norito; Okubo, Nariaki; Chen, F.*

Nanotechnology, 29(42), p.424001_1 - 424001_8, 2018/10

 Times Cited Count:4 Percentile:61.64(Nanoscience & Nanotechnology)

We report on the fabrication of reshaped Ag nanoparticles (NPs) embedded in a Nd:YAG crystal by combining Ag ion implantation and swift heavy Xe ion irradiation. The localized surface plasmon resonance (LSPR) effect is proved to be efficiently modulated according to the phenomenon of polarization-dependent absorption. The LSPR peak located at 448 nm shows red shift and blue shift at 0 degree and 90 degree polarization, respectively, which is in good agreement with calculation by discrete dipole approximation. Based on the near-field intensity distribution, the interaction between reshaped NPs shows a non-ignorable effect on the optical absorption. Furthermore, the polarization-dependence of the photoluminescence (PL) intensity is analyzed, which is positively related to the modulated LSPR absorption. It demonstrates the potential of the enhancement of PL intensity by embedded plasmonic Ag NPs.

Journal Articles

Vaporlike phase of amorphous SiO$$_{2}$$ is not a prerequisite for the core/shell ion tracks or ion shaping

Amekura, Hiroshi*; Kluth, P.*; Mota-Santiago, P.*; Sahlberg, I.*; Jantunen, V.*; Leino, A. A.*; Vazquez, H.*; Nordlund, K.*; Djurabekova, F.*; Okubo, Nariaki; et al.

Physical Review Materials (Internet), 2(9), p.096001_1 - 096001_10, 2018/09

 Times Cited Count:6 Percentile:55.54(Materials Science, Multidisciplinary)

When a swift heavy ion (SHI) penetrates amorphous SiO$$_{2}$$, a core/shell (C/S) ion track is formed due to vaporization, where the ion track consists of a lower-density core and a higher-density shell. Here we reexamine this hypothesis. The MD simulations indicate that the vaporization is not induced under 50-MeV Si irradiation ($$Se$$ = 3 keV/nm), but the C/S tracks and the ion shaping of nanoparticles are nevertheless induced. Thus, the vaporization is not a prerequisite for the C/S tracks and the ion shaping.

Journal Articles

X-ray absorption near edge structure and first-principles spectral investigations of cationic disorder in MgAl$$_{2}$$O$$_{4}$$ induced by swift heavy ions

Yoshioka, Satoru*; Tsuruta, Konosuke*; Yamamoto, Tomokazu*; Yasuda, Kazuhiro*; Matsumura, Sho*; Ishikawa, Norito; Kobayashi, Eiichi*

Physical Chemistry Chemical Physics, 20(7), p.4962 - 4969, 2018/02

 Times Cited Count:3 Percentile:83(Chemistry, Physical)

Cationic disorder in the MgAl$$_{2}$$O$$_{4}$$ spinel induced by swift heavy ions was investigated using the X-ray absorption near edge structure. With changes in the irradiation fluences of 200 MeV Xe ions, the Mg K-edge and Al K-edge spectra were synchronously changed. The calculated spectra based on density function theory indicate that the change in the experimental spectra was due to cationic disorder between Mg in tetrahedral sites and Al in octahedral sites. These results suggest a high inversion degree to an extent that the completely random configuration is achieved in MgAl$$_{2}$$O$$_{4}$$ induced by the high density electronic excitation under swift heavy ion irradiation.

Journal Articles

Hillocks created for amorphizable and non-amorphizable ceramics irradiated with swift heavy ions; TEM study

Ishikawa, Norito; Taguchi, Tomitsugu*; Okubo, Nariaki

Nanotechnology, 28(44), p.445708_1 - 445708_11, 2017/11

 Times Cited Count:11 Percentile:34.8(Nanoscience & Nanotechnology)

TEM method is applied to Y$$_{3}$$Fe$$_{5}$$O$$_{12}$$ (YIG) and three fluorides (CaF$$_{2}$$, SrF$$_{2}$$ and BaF$$_{2}$$) for observing hillocks. For YIG which is one of the amorphizable materials, hillocks are found to have amorphous feature which is consistent with amorphous feature of ion-tracks. For the fluorides, it is found that the hillocks do not exhibit amorphous feature, and they are composed of nano-crystallites. It is found for the first time that for YIG the hillock diameter is comparable to the ion-track diameter, whereas for the fluorides it is always larger than the ion-track diameter. The results indicate that recrystallization after transient melting plays an important role for formation of hillocks and ion-tracks in fluorides.

Journal Articles

Ion species/energy dependence of irradiation-induced lattice structure transformation and surface hardness of Ni$$_{3}$$Nb and Ni$$_{3}$$Ta intermetallic compounds

Kojima, Hiroshi*; Kaneno, Yasuyuki*; Ochi, Masaaki*; Semboshi, Satoshi*; Hori, Fuminobu*; Saito, Yuichi*; Ishikawa, Norito; Okamoto, Yoshihiro; Iwase, Akihiro*

Materials Transactions, 58(5), p.739 - 748, 2017/05

 Times Cited Count:4 Percentile:72.06(Materials Science, Multidisciplinary)

Bulk samples of Ni$$_{3}$$Nb and Ni$$_{3}$$Ta intermetallic compounds were irradiated with 16 MeV Au, 4.5 MeV Ni, 4.5 MeV Al, 200 MeV Xe and 1.0 MeV He ions, and the change in near-surface lattice structure was investigated by means of the grazing incidence X-ray diffraction (GIXD)and EXAFS. The Ni$$_{3}$$Nb and Ni$$_{3}$$Ta lattice structures transform from the ordered structures (orthorhombic and monoclinic structures for Ni$$_{3}$$Nb and Ni$$_{3}$$Ta, respectively) to the amorphous state by the Au, Ni, Al and Xe ion irradiations. Irrespective of such heavy ion species or energies, the lattice structure transformation to the amorphous state almost correlate with the density of energy deposited through elastic collisions.

Journal Articles

Flux pinning properties in YBCO films with growth-controlled nano-dots and heavy-ion irradiation defects

Sueyoshi, Tetsuro*; Kotaki, Tetsuya*; Uraguchi, Yusei*; Suenaga, Momotaro*; Makihara, Takahiro*; Fujiyoshi, Takanori*; Ishikawa, Norito

Physica C, 530, p.72 - 75, 2016/11

 Times Cited Count:5 Percentile:65.32(Physics, Applied)

In order to clarify the influence of size and spatial distribution of three-dimensional pinning centers (3D-PCs) on hybrid flux pinning, columnar defects (CDs) were installed by using 200 MeV Xe ions along the $$c$$-axis direction into quasi-multilayered films consisting of YBa$$_{2}$$Cu$$_{3}$$Oy layers and pseudo layers of BaSnO$$_{3}$$. The positive effect of the BaSnO$$_{3}$$ doping on the hybrid flux pinning stands out for the critical current density $$J_{rm c}$$ around $$B parallel c$$ in high magnetic field and/or inclined magnetic field off the $$c$$-axis, whereas there is little difference in the $$J_{rm c}$$ at $$B parallel c$$ among the same growth temperature samples for low magnetic field. In the case of the in-plane distributed BaSnO$$_{3}$$ nano-dots, the Jc around $$B parallel ab$$ is remarkably enhanced, whereas there is a detrimental effect on the Jc around $$B parallel c$$. These imply that the tuning of 3D-PCs is one of the keys to improve the $$J_{rm c}$$ at all magnetic field orientations for the hybrid flux pinning.

Journal Articles

High flux pinning efficiency by columnar defects dispersed in three directions in YBCO thin films

Sueyoshi, Tetsuro*; Nishimura, Takahiro*; Fujiyoshi, Takanori*; Mitsugi, Fumiaki*; Ikegami, Tomoaki*; Ishikawa, Norito

Superconductor Science and Technology, 29(10), p.105006_1 - 105006_7, 2016/10

 Times Cited Count:6 Percentile:60.05(Physics, Applied)

A systematic investigation of flux pinning by widely direction-dispersed columnar defects (CDs) in YBa$$_{2}$$Cu$$_{3}$$Oy thin films was carried out by using heavy-ion irradiation: a parallel configuration of CDs aligned along the $$c$$-axis, and two trimodal splay configurations composed of crossing CDs; relative to the $$c$$-axis, where the splay plane defined by the three irradiation angles is perpendicular (trimodal-A) or parallel (trimodal-B) to the transport current direction. The trimodal configurations show high pinning efficiency over a wide range of magnetic field orientations compared to the parallel one at low magnetic field. In particular, trimodal-B shows the higher critical current density of the two trimodal configurations.

251 (Records 1-20 displayed on this page)