Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
家田 淳一; 荒木 康史; 山根 結太*
固体物理, 59(8), p.403 - 410, 2024/08
In recent years, "emergent inductors" using current-induced magnetization dynamics in magnetic nanostructures have been discovered, opening the way to power control in the nanoscale, which was previously impossible. We review the spin-orbit interaction phenomenon for emergent inductors.
山根 結太*; 家田 淳一
まぐね, 13(5), p.235 - 241, 2018/10
We overview the recent theoretical development on spin-transfer torque in antiferromagnetic nanostructures and related subjects. As antiferromagnetic materials are generating more attention lately due to their potential to play pivotal roles in spintronics applications, demands are rising for reliable methods to control and detect antiferromagnetic textures and their dynamics. While antiferromagnets are largely insensitive to external magnetic fields in general, electrical means are proving to be capable of offering promising ways to access the antiferromagnetic dynamics. We discuss in this article the possibility of manipulation and observation of dynamical antiferromagnetic textures by electrical current and voltage.
家田 淳一
no journal, ,
ナノ構造磁性体の磁気ダイナミクスは創発電磁場の生成を通じてスピン起電力をもたらす。その基礎物性から最近の応用研究までを概観し、今後の発展可能性について議論する。
家田 淳一
no journal, ,
I will talk about what I witnessed in spintronics research experience for the last two decades and so, focusing on some key findings and remaining problems. This cannot be an overview of the whole progress of the research field in a complete or equally balanced manner. Instead, it will be a very personal and probably biased view. Nevertheless, I eagerly hope that such a recollection might be helpful for younger generation to step further because physical research would sometimes be progressing in a spiral manner such that old well-discussed topics become a frontline after some decades.
家田 淳一
no journal, ,
強磁性金属中の非一様磁化構造が時間変化すると創発電磁場が生じスピン起電力が得られる。最近、らせん磁性体に交流電流を流すことで得られるスピン起電力が、インダクタとして作用する理論提案がなされごく最近実験的に観測された。この「創発インダクタ」は、コイルによるインダクタとサイズ依存性が異なり、より小さい素子ほど大きな効果が期待される。本講義前半では、スピン起電力のあらましからスピン軌道相互作用の影響までを含む当該テーマの全体像をつかむ。以上を踏まえ、後半では、創発インダクタの解説を行うとともに、スピン軌道相互作用による素子性能の様々な変調効果を紹介する。