Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 176

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 6; Analysis on oxidation behavior of fuel cladding tubes by the SAMPSON code

Morita, Yoshihiro*; Suzuki, Hiroaki*; Naito, Masanori*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05

In this study, the SAMPSON code was modified to evaluate severe accidents in a spent fuel pool (SFP). Not only the SFP but also upper spaces of the SFP, walls of the reactor building, and the blowout panel were included. Air oxidation models obtained by the Zircaroy-4 cladding (ANL model) and the Zircaroy-2 cladding (JAEA model) were included in the modified SAMPSON code. Experiments done by Sandia National Laboratory using simulated fuel assemblies equivalent to those of an actual BWR plant were analyzed by the modified SAMPSON code to confirm the functions for analysis of the severe SFP accidents.

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 7; Analysis on effectiveness of spray cooling by the SAMPSON code

Suzuki, Hiroaki*; Morita, Yoshihiro*; Naito, Masanori*; Nemoto, Yoshiyuki; Nagatake, Taku; Kaji, Yoshiyuki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 7 Pages, 2019/05

In this paper, modification of the SAMPSON code was carried out to enable the analysis of spray cooling. The SAMPSON analysis of a spray cooling experiment was performed to confirm reproducibility of spray cooling behavior of fuel claddings. The modified SAMPSON code was applied to a hypothetical loss-of-coolant accident analysis of the SFP. Effectiveness of spray cooling on cladding temperature behavior was investigated. The SAMPSON analysis showed that spraying from the top of the SFP was effective for cooling the fuel assemblies exposed to the gas phase.

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 8; Safety margin of spent fuel in large LOCA event by the simple assessment method

Someya, Takayuki*; Chitose, Hiromasa*; Watanabe, Satoshi*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05

In this study, CFD analysis has been conducted for the assessment of spent fuel integrity in large LOCA event and the maximum temperature of spent fuel assemblies has been evaluated. Then, it has been compared with the result of the simple assessment method. As a case study, additional CFD analysis has been conducted, where water level in SFP decreases to the Bottom of Active Fuel (BAF) due to boil-off. Since this scenario might be more severe than large LOCA scenario, the number of spent fuel assemblies, their decay heat and loading pattern to maintain spent fuel integrity are investigated.

JAEA Reports

Comparison of potential radiotoxicity of actinide elements; Data for consideration of optimum recovery of actinide elements

Morita, Yasuji; Nishihara, Kenji; Tsubata, Yasuhiro

JAEA-Data/Code 2018-017, 32 Pages, 2019/02

JAEA-Data-Code-2018-017.pdf:2.35MB

Potential radiotoxicity defined as a summation of intake dose was estimated for each actinide element to suppose target of recovery ratio of minor actinide (MA). Importance of each element from the viewpoint of the radiotoxicity was evaluated from the evolution of the radiotoxicity and ratio to the total radiotoxicity. In all the 4 types of spent fuels examined, Am is the most important element. For instance, the potential radiotoxicity of Am accounts for 93% of the total radiotoxicity of actinide elements in HLW produced by reprocessing of spent fuel from pressurized water reactor (PWR). Residual Pu after the recovery of 99.5% in reprocessing still gives contribution that cannot be ignored in radiotoxicity. When the burn-up of the UO$$_{2}$$ fuel in PWR increased, the potential radiotoxicity of actinide elements increased almost in proportion to the burn-up, but in case of MOX fuel in PWR and minor-actinide-recycled MOX fuel in fast reactor, the radiotoxicity of actinide elements increased further. Much consideration is required for the recovery of actinide elements in HLW from different types of fuel.

Journal Articles

A Spectroscopic technique for analysis developed in the field of unclear energy

Kusaka, Ryoji

Bunko Kenkyu, 67(6), p.239 - 240, 2018/12

A spectroscopic technique for analysis developed by collaboration between Japan Atomic Energy Agency (JAEA) and Quantum and Radiological Science and Technology (QST) is discussed for readers outside the field of nuclear energy. This paper introduces a quantitative analysis for $$^{107}$$Pd radioisotope contained in a spent nuclear fuel by using laser-induced photoreduction and inductively coupled plasma mass spectrometry (ICP-MS). The importance and problems of quantitative analysis for radioisotopes in spent nuclear fuels are described, and the principle, advantages, and future applications of the spectroscopic technique are discussed.

Journal Articles

Rapid separation of zirconium using microvolume anion-exchange cartridge for $$^{93}$$Zr determination with isotope dilution ICP-MS

Asai, Shiho; Hanzawa, Yukiko; Konda, Miki; Suzuki, Daisuke; Magara, Masaaki; Kimura, Takaumi; Ishihara, Ryo*; Saito, Kyoichi*; Yamada, Shinsuke*; Hirota, Hideyuki*

Talanta, 185, p.98 - 105, 2018/08

 Times Cited Count:1 Percentile:62.19(Chemistry, Analytical)

Estimating the risks associated with radiation from long-lived fission products (LLFP) in radioactive waste is essential to ensure the long-term safety of potential disposal sites. In this study, the amount of $$^{93}$$Zr, a LLFP, was determined by ICP-MS after separating Zr from a spent nuclear fuel solution using a microvolume anion-exchange cartridge (TEDA cartridge). The TEDA cartridge achieved highly selective separation of Zr regardless of its small bed volume of 0.08 cm$$^{3}$$. The time taken to complete the Zr separation was 1.2 min with a flow rate of 1.5 mL/min, which was 10 times faster than that for a conventional anion-exchange resin column. Almost all the other elements were removed, leading to accurate measurement of $$^{93}$$Zr. The result connects experimental value to theoretical prediction provided by ORIGEN2, which requires verification. With the measured value, we demonstrated that the theoretical value is reliable enough to estimate radiation risks.

Journal Articles

Determination of $$^{107}$$Pd in Pd recovered by laser-induced photoreduction with inductively coupled plasma mass spectrometry

Asai, Shiho; Yomogida, Takumi; Saeki, Morihisa*; Oba, Hironori*; Hanzawa, Yukiko; Horita, Takuma; Kitatsuji, Yoshihiro

Analytical Chemistry, 88(24), p.12227 - 12233, 2016/12

 Times Cited Count:4 Percentile:63.41(Chemistry, Analytical)

Safety evaluation of a radioactive waste repository requires credible activity estimates confirmed by actual measurements. A long-lived radionuclide, $$^{107}$$Pd, which can be found in radioactive wastes, is one of the difficult-to-measure nuclides and results in a deficit in experimentally determined contents. In this study, a precipitation-based separation method has been developed for the determination of $$^{107}$$Pd with ICP-MS. The photoreduction induced by laser irradiation at 355 nm provides short-time and one-step recovery of Pd. The proposed method was verified by applying it to a spent nuclear fuel sample. In order to efficiently recover Pd, a natural Pd standard was employed as the Pd carrier. The chemical yield of Pd was about 90% with virtually no impurities, allowing accurate quantification of $$^{107}$$Pd.

Journal Articles

Evaluation of source term parameters for spent fuel disposal in foreign countries, 2; Dissolution rates of spent fuel matrices and construction materials for fuel assemblies

Kitamura, Akira; Chikazawa, Takahiro*; Akahori, Kuniaki*; Tachi, Yukio

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 23(1), p.55 - 72, 2016/06

The Japanese geological disposal program has started researching disposal of spent nuclear fuel (SF) in deep geological strata (hereafter "direct disposal of SF") as an alternative management option other reprocessing followed by vitrification and geological disposal of high-level radioactive waste. We conducted literature survey of dissolution rate of SF matrix and constructing materials (e.g. zircaloy cladding and control rods) selected in safety assessment reports for direct disposal of SF in Europe and United States. We also investigated basis of release rate determination and assignment of uncertainties in the safety assessment reports. Furthermore, we summarized major conclusions proposed by some European projects governed by European Commission. It was found that determined release rates are fairly similar to each other due to use of similar literature data in all countries of interest. It was also found that the determined release rates were including conservativeness because it was difficult to assign uncertainties quantitatively. It is expected that these findings are useful as fundamental information for determination of the release rates for the safety assessment of Japanese SF disposal system.

Journal Articles

Effect of boiling under reduced pressure on corrosion of stainless steels in nitric acid solution simulating high-level radioactive liquid waste

Irisawa, Eriko; Ueno, Fumiyoshi; Kato, Chiaki; Abe, Hitoshi

Zairyo To Kankyo, 65(4), p.134 - 137, 2016/04

In order to investigate the effect of boiling under reduced pressure on corrosion of stainless steel in the nitric acid solution, the corrosion tests simulating the high-level radioactive liquid waste evaporator were performed. The results of immersion tests of stainless steels in the solution with and without boiling showed that the corrosion rates in boiling solution were larger than those in not boiling solution in case of same temperature of solution. Moreover, the cathode polarization curves showed that the corrosion potential of stainless steel in boiling solutions were shifted nobler, and the current intensity became larger than that in not boiling solutions. According to these results, it can be concluded that boiling of solution under reduced pressure accelerate the corrosion rates.

Journal Articles

Preparation of microvolume anion-exchange cartridge for inductively coupled plasma mass spectrometry-based determination of $$^{237}$$Np content in spent nuclear fuel

Asai, Shiho; Hanzawa, Yukiko; Konda, Miki; Suzuki, Daisuke; Magara, Masaaki; Kimura, Takaumi; Ishihara, Ryo*; Saito, Kyoichi*; Yamada, Shinsuke*; Hirota, Hideyuki*

Analytical Chemistry, 88(6), p.3149 - 3155, 2016/03

 Times Cited Count:5 Percentile:55.33(Chemistry, Analytical)

Neptunium-237 ($$^{237}$$Np) is one of the major long-lived radionuclides found in spent nuclear fuel. To evaluate the long-term safety of a HLW repository, the $$^{237}$$Np content in spent nuclear fuel must be determined. In this study, micro-volume anion-exchange porous polymer disk-packed cartridges were prepared for Am-Np separation, which is required prior to the measurement of $$^{237}$$ Np with ICP-MS. Disks with a volume of 0.08 cm$$^{3}$$ were cut out from porous sheets having triethylenediamine (TEDA)-containing polymer chains densely attached on the pore surface. The resulting TEDA-introduced disk cartridge was applied to a spent nuclear fuel sample. The chemical yield of Np was 90.4%, which is sufficiently high for ICP-MS measurement of $$^{237}$$Np. Compared with the conventional separation technique using commercially available anion-exchange resin columns, the time required to adsorb, wash and elute Np using the TEDA-introduced disk cartridge was reduced by 75%.

JAEA Reports

Preliminary assessment of geological disposal system for spent fuel in Japan; First progress report on direct disposal

Radioactive Waste Processing and Disposal Research Department

JAEA-Research 2015-016, 327 Pages, 2015/12

JAEA-Research-2015-016.pdf:41.98MB

The Japan Atomic Energy Agency has prepared the technical progress report on preliminary assessment of geological disposal for spent fuel (hereinafter referred to as "First Progress Report on Direct Disposal"). This report is aiming to examine the technical feasibility of the direct disposal of spent fuel in Japan, based on the results of research and development (R&D) on SF direct disposal carried out during FY 2013. In the First Progress Report on Direct Disposal, the available technology for the direct disposal of spent fuel in Japan was discussed through the preliminary design and safety assessment for the geological disposal system which were made under the limited conditions of representative characteristics of geological environment and spent fuel. Through R&D, the challenges and concerns on the engineering technology and the safety assessment, to be resolved for the Second Progress Report on Direct Disposal, were identified and classified.

JAEA Reports

Report on the evaluation of research and development activities in FY2014 issue; "Research and Development on Reprocessing of Nuclear Fuel Materials" (Ex-post evaluation)

Tokai Reprocessing Technology Development Center

JAEA-Evaluation 2015-012, 83 Pages, 2015/12

JAEA-Evaluation-2015-012.pdf:6.67MB

Japan Atomic Energy Agency (hereafter referred as "JAEA") consulted the "Evaluation Committee of Research and Development Activities for Fast Reactor Cycle" to assess the issue on "Research and Development on Reprocessing of Nuclear Fuel Materials" conducted by JAEA during the period from FY2010 to FY2014. In response to the JAEA's request, the committee assessed the R&D programs and the activities of JAEA related to the issue and concluded the mission was accomplished. This evaluation was performed based on the "General guideline for the evaluation of government R&D activities", the "Guideline for evaluation of R&D in Ministry of Education, Culture, Sports, Science and Technology (MEXT)" and the "Operational rule for evaluation of R&D activities" by JAEA.

Journal Articles

Accumulation of gadolinium isotopes in used nuclear fuel

Suyama, Kenya; Kashima, Takao

Proceedings of International Conference on Nuclear Criticality Safety (ICNC 2015) (DVD-ROM), p.273 - 282, 2015/09

In the technical development of the criticality safety control of the fuel debris of Fukushima accident in Japan, there have been a discussion on a possibility of adopting BUC with FP. The Expert Group on Burnup Credit Criticality Safety (EGBUC) under the Working Party on Nuclear Criticality Safety (WPNCS) in OECD/NEA Nuclear Science Committee had carried out an international burnup calculation benchmark "Phase-IIIB" and "Phase-IIIC" for BWR fuel assemblies. In these benchmarks the difference of the calculation results of $$^{155}$$Gd among the participants obtained keen interests because it showed rather larger difference among the participants. Authors has been carried out additional analyses on the accumulation of the gadolinium isotopes in the used nuclear fuel during the burnup. Without cooling time, the assembly-averaged amount of $$^{155}$$Gd against the burnup value depends on the burnout property of gadolinium in the burnable poison rods. However, after few year cooling time, $$^{155}$$Gd increase drastically by the decay of $$^{155}$$Eu. In this case, the amount of gadolinium isotopes in the burnable poison rods has less importance. It means that the adopted parameters and data concerning the $$^{155}$$Eu generation have much more importance than the burnup treatment of the burnable poison rods for better prediction of $$^{155}$$Gd.

Journal Articles

Basic technology development of advanced non-destructive detection / Measurement of nuclear material for nuclear security and nuclear nonproliferation

Seya, Michio; Naoi, Yosuke; Kobayashi, Naoki; Nakamura, Takahisa; Hajima, Ryoichi; Soyama, Kazuhiko; Kureta, Masatoshi; Nakamura, Hironobu; Harada, Hideo

Kaku Busshitsu Kanri Gakkai (INMM) Nippon Shibu Dai-35-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/01

The Integrated Support Center for Nuclear Non-proliferation and Nuclear Security (ISCN) of Japan Atomic Energy Agency (JAEA) has been conducting (based on collaborations with JAEA other centers) the following basic technology development programs of advanced non-destructive detection/measurement of nuclear material for nuclear security and nuclear non-proliferation. (1) The demonstration test of the Pu-NDA system for spent fuel assembly using PNAR and SINRD (JAEA/USDOE(LANL) collaboration, completed in JFY2013), (2) Basic development of NDA technologies using laser Compton scattered $$gamma$$-rays (Demonstration of an intense mono-energetic $$gamma$$-ray source), (3) Development of alternative to He-3 neutron detection technology, (4) Development of neutron resonance densitometry (JAEA/JRC collaboration)This paper introduces above programs.

Journal Articles

Direct disposal

Hatanaka, Koichiro; Shibata, Masahiro

Tekisuto "Kakunenryo Saikuru" (Internet), 6 Pages, 2014/06

no abstracts in English

Journal Articles

A Simple radioactivity determination technique by alpha-ray spectrometry for homogenous thick sample

Kameo, Yutaka; Fujiwara, Asako; Watanabe, Koichi; Kono, Nobuaki; Nakashima, Mikio

Nippon Genshiryoku Gakkai Wabun Rombunshi, 4(3), p.187 - 193, 2005/09

no abstracts in English

JAEA Reports

Criticality safety assessment by assuming spent fuel burnup distribution; Examination of various methods for setting burnup, 1 (Contract research)

Nomura, Yasushi*; Okuno, Hiroshi; Miyoshi, Yoshinori

JAERI-Tech 2004-030, 64 Pages, 2004/03

JAERI-Tech-2004-030.pdf:4.59MB

no abstracts in English

Journal Articles

Transportation of spent fuels from research reactor to USA

Koda, Nobuyuki; Kusunoki, Tsuyoshi; Watanabe, Masanori; Ojima, Masao*; Kondo, Makoto

UTNL-R-0426, p.5_1 - 5_9, 2003/03

no abstracts in English

JAEA Reports

Annual report on operation, utilization and technical development of Hot Laboratories; April 1, 2001 to March 31, 2002

Department of Hot Laboratories

JAERI-Review 2002-039, 106 Pages, 2003/01

JAERI-Review-2002-039.pdf:9.46MB

no abstracts in English

Journal Articles

General description and operational experience of a dry storage facility for JRR-3 spent fuels in JAERI

Kusunoki, Tsuyoshi; Koda, Nobuyuki; Uchiyama, Junzo*

Dai-24-Kai Kaku Busshitsu Kanri Gakkai Nippon Shibu Nenji Taikai Rombunshu, p.149 - 156, 2003/00

A dry storage facility (DSF) was constructed in March 1982 to store the JRR-3 metallic natural uranium spent fuel elements those had been stayed under water in a core or a spent fuel pool for a long period (Maximum : about 20 years). The facility consists of a storage, an air circulation system, an auxiliary system and a control room. The storage is composed of the concrete shielding and 100 dry-wells. In each dry-well, a stainless steel made canister with the spent fuels is stored. The air circulation system has an air-inlet and outlet pipes, headers and air circulation blowers to circulate air in the system and maintain the pressure inside the dry-well below the atmosphere. This system also performs the role as radiation monitoring system. The facility is designed to satisfy safety requirements as a nuclear fuel facility, such as criticality safety, radiation shielding and earthquake performance. JAERI has successfully experienced the dry storage of 1798 spent fuel elements about for 20 years.

176 (Records 1-20 displayed on this page)