Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 244

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Controlled release of radioactive krypton gas

Watanabe, Kazuki; Kimura, Norimichi*; Okada, Jumpei; Furuuchi, Yuta; Kuwana, Hideharu*; Otani, Takehisa; Yokota, Satoru; Nakamura, Yoshinobu

JAEA-Technology 2023-010, 29 Pages, 2023/06

JAEA-Technology-2023-010.pdf:3.12MB

The Krypton Recovery Development Facility reached an intended technical target (krypton purity of over 90% and recovery rate of over 90%) by separation and rectification of krypton gas from receiving off-gas produced by the shearing and the dissolution process in the spent fuel reprocessing at the Tokai Reprocessing Plant (TRP) between 1988 and 2001. In addition, the feasibility of the technology was confirmed through immobilization test with ion-implantation in a small test vessel from 2000 to 2002, using a part of recovered krypton gas. As there were no intentions to use the remaining radioactive krypton gas in the krypton storage cylinders, we planned to release this gas by controlling the release amount from the main stack, and conducted it from February 14 to April 26, 2022. In this work, all the radioactive krypton gas in the cylinders (about 7.1$$times$$10$$^{5}$$ GBq) was released at the rate of 50 GBq/min or less lower than the maximum release rate from the main stuck stipulated in safety regulations (3.7$$times$$10$$^{3}$$ GBq/min). Then, the equipment used in the controlled release of radioactive krypton gas and the main process (all systems, including branch pipes connected to the main process) were cleaned with nitrogen gas. Although there were delays due to weather, we were able to complete the controlled release of radioactive krypton gas by the end of April 2022, as originally targeted without any problems such as equipment failure.

Journal Articles

Development of engineering scale extraction chromatography separation system, 1; Overview of developments in engineering scale system

Watanabe, So; Takahatake, Yoko; Hasegawa, Kenta; Goto, Ichiro*; Miyazaki, Yasunori; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 6 Pages, 2023/05

Journal Articles

Development of engineering scale extraction chromatography separation system, 2; Spray drying granulation of silica support for adsorbent

Hasegawa, Kenta; Goto, Ichiro*; Miyazaki, Yasunori; Ambai, Hiromu; Watanabe, So; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 5 Pages, 2023/05

Journal Articles

Design of MA(III)/Ln(III) separation process of extraction chromatography technology

Akuzawa, Tadashi*; Kim, S.-Y.*; Kubota, Masahiko*; Wu, H.*; Watanabe, So; Sano, Yuichi; Takeuchi, Masayuki; Arai, Tsuyoshi*

Journal of Radioanalytical and Nuclear Chemistry, 331(12), p.5851 - 5858, 2022/12

 Times Cited Count:5 Percentile:81.82(Chemistry, Analytical)

Journal Articles

Flexible fuel cycle system for the effective management of plutonium

Fukasawa, Tetsuo*; Hoshino, Kuniyoshi*; Yamashita, Junichi*; Takano, Masahide

Journal of Nuclear Science and Technology, 57(11), p.1215 - 1222, 2020/11

 Times Cited Count:1 Percentile:11.54(Nuclear Science & Technology)

The flexible fuel cycle initiative system (FFCI system) has been developed to reduce spent fuel (SF) amounts, to keep high availability factor for the reprocessing plant and to increase the proliferation resistance for the recovered Pu. The system separates most U from the SF at first, and the residual material called recycle material (RM) which contains Pu, minor actinides, fission products and remaining U will go to Pu(+U) recovery from the RM for Pu utilizing reactor in future. The Pu utilizing reactor is FBR or LWR with MOX fuel. The RM is the buffer material between SF reprocessing and Pu utilizing reactor with compact size and high proliferation resistance, which can suppress the amount of relatively pure Pu. The innovative technologies of FFCI are most U separation and temporary RM storage. They are investigated by the literature survey, fundamental experiments using simulated material and analyses using simulation code. This paper summarizes the feasibility confirmation results of FFCI.

Journal Articles

Structural characterization of Eu-HONTA complexes by IBIL and EXAFS analyses

Watanabe, So; Sano, Yuichi; Okada, Makoto*; Matsuura, Haruaki*; Hagura, Naoto*; Kada, Wataru*

Nuclear Instruments and Methods in Physics Research B, 477, p.60 - 65, 2020/08

 Times Cited Count:3 Percentile:35.09(Instruments & Instrumentation)

IBIL and EXAFS analyses were applied on strucutral analysis of Eu complex formed in adsorbent developed for extraction chromatography. Those analyses revealed slight structural difference between adsorbent and solvent systems.

Journal Articles

Technological development of the particle size adjustment of dry recovered powder

Segawa, Tomoomi; Yamamoto, Kazuya; Makino, Takayoshi; Iso, Hidetoshi; Kawaguchi, Koichi; Ishii, Katsunori; Sato, Hisato; Fukasawa, Tomonori*; Fukui, Kunihiro*

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.738 - 745, 2019/09

In the MOX fuel fabrication process, the dry grinding technology of mixed oxide pellets have been developed for the effective use of nuclear fuel materials. To develop a technology to control the particle size of dry recovered powder, the performance of the buhrstone mill and the collision plate type jet mill were studied using a simulated powder of particle size distribution about 500 $$mu$$m. We found that the particle size can be controlled at the range of about 250 $$mu$$m or less by both by adjusting the clearance between the grinding wheels of the buhrstone mill, and the clearance and elevation angle of the clarification zone of the collision plate type jet mill. And furthermore, the collision plate type jet mill is considered to be suitable for particle size control because the operating parameters of the classifier can be finely adjusted.

Journal Articles

Adsorption of platinum-group metals and molybdenum onto aluminum ferrocyanide in spent fuel solution

Onishi, Takashi; Sekioka, Ken*; Suto, Mitsuo*; Tanaka, Kosuke; Koyama, Shinichi; Inaba, Yusuke*; Takahashi, Hideharu*; Harigai, Miki*; Takeshita, Kenji*

Energy Procedia, 131, p.151 - 156, 2017/12

 Times Cited Count:11 Percentile:98.82(Energy & Fuels)

no abstracts in English

Journal Articles

Development of U and Pu co-processing process; Demonstration of U, Pu and Np Co-recovery with centrifugal contactors

Kudo, Atsunari; Kurabayashi, Kazuaki; Yanagibashi, Futoshi; Sasaki, Shunichi; Sato, Takehiko; Fujimoto, Ikuo; Obu, Tomoyuki

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 6 Pages, 2017/04

The Co-processing process is the extraction process to recover Pu/U mixed product solution with given Pu/U ratio for improving of nuclear proliferation resistance. In addition, Np is also recovered with U and Pu because Np is one of minor actinides and a long-lived radionuclide and Np has the extractability into TBP solvent. Development of its flowsheet achieves to decrease environmental effect of waste materials. The orientation of development about Co-processing process is to demonstrate of reprocessing the future spent fuels from a LWR, a LWR-MOX hybrid, and a FR-MOX with one cycle. We demonstrated by use of miniature reflux-type centrifugal contactors at the partitioning unit. The test conditions of the Pu/U ratio in the loaded solvents were 1%, 3%, and 5% considering the composition of spent fuels. We used the HAN as the reductant of Np (VI) for back extraction. The results of these tests were very good. We got the prospect of U, Pu, and Np Co-processing flowsheet.

Journal Articles

Development and implementation of GloveBox Cleanout Assistance Tool (BCAT) to detect the presence of MOX by computational approach

Nakamura, Hironobu; Nakamichi, Hideo; Mukai, Yasunobu; Hosoma, Takashi; Kurita, Tsutomu; LaFleur, A. M.*

Proceedings of International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2017) (USB Flash Drive), 7 Pages, 2017/04

In order to maintain facility nuclear material accountancy (NMA) and safeguards properly, to understand where and how much holdup deposit in the process is presence is very important for the cleanout before PIT. JAEA and LANL developed a GloveBox Cleanout Assistance Tool (BCAT) to help cleanout (MOX powder recovering in a glovebox) for invisible holdup effectively by computational approach which is called distributed source-term approach (DSTA). The BCAT tool is a simple neutron measurement slab detectors and helps operator to find locations of holdup. To know the holdup location and the activity from the neutron measurements, the relation between BCAT measurements results at predetermined positions (57 positions) and source voxels (53 voxels) that we want to know the holdup activity was mathematically defined as a matrix by the MCNPX simulation. The model of MCNPX for entire process is very precisely established. We have implemented and experimentally proved that the BCAT tool can direct the operator to recoverable holdup that would otherwise be accounted for as MUF. Reducing facility MUF results in a direct improvement of the facility NMA. The BCAT enables the staff to significantly improve their knowledge of the locations of residual holdup in the process area. JAEA would like to use this application for dismantling of the glovebox with transparency in the future.

JAEA Reports

Current status of a decommissioning project in the Enrichment Engineering Facilities; Results in the first-half of the fiscal year of 2014

Matsumoto, Takashi; Morimoto, Yasuyuki; Takahashi, Nobuo; Takata, Masaharu; Yoshida, Hideaki; Nakashima, Shinichi; Ishimori, Yuu

JAEA-Technology 2015-036, 60 Pages, 2016/01

JAEA-Technology-2015-036.pdf:9.15MB

The Enrichment Engineering Facilities of the Ningyo-toge Environmental Engineering Center was constructed in order to establish the technical basis of the uranium enrichment plant in Japan. Uranium enrichment tests, using natural and reprocessed uranium, were carried out from 1979 to 1990 at two types of plants in the facilities. UF$$_{6}$$ handling equipment and Supplemental equipment in these plants are intended to be dismantled by 2019 in order to make places for future projects, for example, inventory investigation, precipitation treatment, etc. This report shows the basic plan of this decommissioning project and presents the current state of dismantling in the first-half of the fiscal year of 2014, with indicating its schedule, procedure, situation, results, and so on. The dismantled materials generated amounted to 37 mesh containers and 199 drums, and the secondary waste generated amounted to 271.4 kg.

Journal Articles

Experimental fast reactor "JOYO" retrieval for the bent MARICO-2 test subassembly using remote control devices

Koga, Kazuhiro*; Ohara, Norikazu*; Ino, Hiroichi*; Kondo, Katsumi*; Ito, Hideaki; Ashida, Takashi; Nakamura, Toshiyuki

FAPIG, (190), p.3 - 8, 2015/07

no abstracts in English

Journal Articles

Demonstration of high-flux photon generation from an ERL-based laser Compton photon source

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Araki, Sakae*; Honda, Yosuke*; Kosuge, Atsushi*; Terunuma, Nobuhiro*; Urakawa, Junji*

Proceedings of 6th International Particle Accelerator Conference (IPAC '15) (Internet), p.1607 - 1609, 2015/06

Accelerator and laser technologies required for laser Compton scattering (LCS) photon source based on an energy-recovery linac (ERL) have been developed at the Compact ERL (cERL) facility. A high-flux, energy tunable, and monochromatic photon source such as the ERL-based LCS photon source is necessary for nondestructive assay of nuclear materials. For the demonstration of the ERL-based LCS photon generation, a laser enhancement cavity was installed at the recirculation loop of the cERL. The electron beam energy, the laser wavelength, and the collision angle are 20 MeV, 1064 nm, and 18 deg., respectively. The calculated maximum energy of the LCS photons is about 7 keV. A silicon drift detector (SDD) with active area of 17 mm$$^{2}$$ placed 16.6 m from the collision point was used for observation of the LCS photons. As a result of the measurement, the flux on the detector, central energy, and energy width of the LCS photons were obtained as 1200 /s, 6.91 keV, and 81 eV, respectively.

Journal Articles

Construction of the equipment for a demonstration of laser Compton-scattered photon source at the cERL

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Kosuge, Atsushi*; Honda, Yosuke*; Urakawa, Junji*

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1328 - 1331, 2014/10

A high intensity $$gamma$$-ray source from the laser Compton scattering (LCS) by an electron beam in an energy-recovery linac (ERL) is a key technology for a nondestructive assay system to identify nuclear materials. In order to demonstrate accelerator and laser technologies required for a LCS photon generation, a LCS photon source is under construction at the Compact ERL (cERL). The LCS photon source consists of a mode-locked fiber laser and a laser enhancement cavity. A beamline and an experimental hatch are also under construction. The commissioning of the LCS photon source will be started in February 2015 and LCS photon generation is scheduled in March 2015.

Journal Articles

Development of the beamline flux monitor for the laser Compton-scattered photon source

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Kosuge, Atsushi*; Honda, Yosuke*; Urakawa, Junji*

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.839 - 842, 2014/10

In order to demonstrate accelerator and laser technologies required for a laser Compton scattering (LCS) photon generation, a LCS photon source is under construction at the Compact ERL (cERL). We considered the flux monitors for the adjustment LCS photon source. A thin scintillator detector and a silicon drift detector are employed as flux monitors and are installed at the upstream part of the LCS beamline. The background signal level due to the bremsstrahlung of the electron beam was measured by a CsI(pure) scintillator. In the result of the measurement, the background signal is acceptable level for the flux monitors.

Journal Articles

Conversion of endohedral $$^{133}$$Xe-fullerene to endohedral $$^{133}$$Xe-fullerenol to be used in nuclear medicine

Watanabe, Satoshi; Ishioka, Noriko; Sekine, Tsutomu*; Kudo, Hiroshi*; Shimomura, Haruhiko*; Muramatsu, Hisakazu*; Kume, Tamikazu

Journal of Radioanalytical and Nuclear Chemistry, 266(3), p.499 - 502, 2005/11

 Times Cited Count:9 Percentile:52.95(Chemistry, Analytical)

no abstracts in English

Journal Articles

Estimation of the e-gun timing-jitter influence in an energy-rocovery linac

Nagai, Ryoji; Sawamura, Masaru; Hajima, Ryoichi; Kikuzawa, Nobuhiro; Nishimori, Nobuyuki; Nishitani, Tomohiro; Minehara, Eisuke

Proceedings of 2nd Annual Meeting of Particle Accelerator Society of Japan and 30th Linear Accelerator Meeting in Japan, p.376 - 378, 2005/07

no abstracts in English

Journal Articles

Report of ERL-2005 Workshop

Hajima, Ryoichi; Suwada, Tsuyoshi*

Hoshako, 18(3), p.200 - 201, 2005/05

no abstracts in English

Journal Articles

Tritium release behavior from the graphite tiles used at the dome unit of the W-shaped divertor region in JT-60U

Katayama, Kazunari*; Takeishi, Toshiharu*; Manabe, Yusuke*; Nagase, Hiroyasu*; Nishikawa, Masabumi*; Miya, Naoyuki

Journal of Nuclear Materials, 340(1), p.83 - 92, 2005/04

 Times Cited Count:8 Percentile:48.93(Materials Science, Multidisciplinary)

no abstracts in English

JAEA Reports

Achievements of element technology development for breeding blanket

Department of Fusion Engineering Research; Department of Materials Science

JAERI-Review 2005-012, 143 Pages, 2005/03

JAERI-Review-2005-012.pdf:11.74MB

no abstracts in English

244 (Records 1-20 displayed on this page)