Refine your search:     
Report No.
 - 
Search Results: Records 1-16 displayed on this page of 16
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

A Research program for numerical experiments on coupled thermo-hydro-mechanical and chemical processes

Ito, Akira; Kawakami, Susumu; Yui, Mikazu

JNC TN8400 2001-028, 38 Pages, 2002/01

JNC-TN8400-2001-028.pdf:2.35MB

In a repository for high-level radioactive waste, coupled thermo -hydro -mechanical and chemical (THMC) processes will ocurr, involving the interactive processes between radioactive decay heat from the vitrified waste, infiltration of groundwater, swelling pressure generation and chemical evolution of the buffer material and porewater chemistry. In this program, numerical experiment system for the coupled THMC processes will be developed in order to predict the long-term performance of the near-field (engineered barrier and host rock) for various geological environments. The simulation code development has been started in FY 2001 and three development steps are planned, because (1)development will be continued for some years, (2)feasibility of numerical experiment have to be confirmed by using existing tools. This report presents the following items of the simulation code development for the coupled THMC processes. (1)First step of the simulation code development (2)Mass transport passways in compacted bentonite (3)Parallelization of the simulation code

JAEA Reports

The Primary evaluation of the impacts of naturaI phenomena on the safety functions of the geological disposal system; An Example study on site generic phase

Makino, Hitoshi; ; Miyahara, Kaname

JNC TN8400 2000-033, 74 Pages, 2000/11

JNC-TN8400-2000-033.pdf:9.19MB

Natural phenomena is one of the potential factors perturbing the long-term stability of the geological environment, and for natural phenomena, it is necessary to consider uncertainties relevant to time, frequency and effect. Therefore it will be important to have information about the potential impacts of natural phenomena on the safety functions of geological disposal system in the future by assuming that natural phenomena perturbs the safety functions of the geological disposal system. In this report, we have considered 4 natural phenomena, 'uplift, subsidence and denudation', 'climatic and sea-level changes', 'earthquakes and fault movement' and 'volcanism', which had been extracted by investigation in foreign countries and by considering the characteristics of Japan as natural phenomena which may perturb the long-term stability of the geological environment. And we have considered mainly typical effects of naturaI phenomena on geological environment and investigated the typical impacts of those natural phenomena on the safety functions of the geological disposal system. On perturbation scenarios, the maximum of total doses have been less than regulatory guidelines in foreign countries in all situations except the cases assuming that a new fault, which causes significant pathway of groundwater flow and nuclide migration, intersects the waste packages. In the case, the maximum of total doses may reach the same level as regulatory guidelines in foreign countries or natural radiation exposure in Japan depending on fault generation time or grandwater flow rate through the fault. And, on isolation failure scenarios, it has been implied that nuclide mass/flux originated from geological disposal is comparable level with nuclide mass/flux in natural environment. These results could give useful information about the potential impacts of natural phenomena on the safety functions of geological disposal system, and also could show the potential importance of ...

JAEA Reports

Direct pH measurement of porewater in compacted bentonite (III); Influence of low alkalinity cement on bentonite porewater

Isogai, Takeshi*; Oda, Chie

JNC TN8400 2000-025, 48 Pages, 2000/09

JNC-TN8400-2000-025.pdf:2.1MB

Porewater chemistly in compacted bentonite would affect a performance of engineered barrier system in a high-level radioactive waste repository, whereas there are little information of the porewater based on experimental data. The previous study provided a new method of direct pH measurement for highly compacted bentonite system and demonstrated some tests for compacted bentonite samples (the dry densities: 1.6 [g/cm$$^{3}$$] and 1.8 [g/cm$$^{3}$$]) both with the de-ionized water and with the NaCl solution. In this study, the solution equilibrated with low alkalinity cement were used in the direct pH measurement to see the effect of the composition of the external solutions, in which the bentonite column immersed. The result showed that the pH value of porewater in the cementitious condition was around 9 during the immersed time 1 to 3 months, while after 6 months became the porewater pH 10.6, which was equal to pH of the external solution.

JAEA Reports

Experimental study of gas generation by microorganism

Mine, Tatsuya*; Mihara, Morihiro;

JNC TN8430 2000-010, 27 Pages, 2000/07

JNC-TN8430-2000-010.pdf:0.72MB

In the geological disposal system of the radioactive wastes, gas generation by microorganism could be significant for the assessment of this system, because organic material included in groundwater, buffer material and wastes might serve as carbon sources for microorganisms. In this study, gas generation tests using microorganisms were carried out under anaerobic condition. The amount of methane and carbon dioxide that were generated by activity of Methane Producing Bacteria (MPB) were measured with humic acid, acetic acid and cellulose as carbon sources. The results showed that methane was not generated from humic acid by activity of MPB. However, in the case of using acetic acid and cellulose, methane was generated, but at high pH condition (pH=10), the amount of generated methane was lower than at low pH (pH=7). It was not clear whether the pH would affect the amount of generated carbon dioxide.

JAEA Reports

Development of the evaluation methodology for earthquake resistance of the engineered barrier system (III)

Mori, Koji*; Neyama, Atsushi*; Nakagawa, Koichi*

JNC TJ8400 2000-064, 175 Pages, 2000/03

JNC-TJ8400-2000-064.pdf:5.23MB

In this study, the following tasks have been performed in order to evaluate the stability of earthquake resistance for the engineered barrier system(EBS) of High Level Waste (HLW) geological isolation system. (1)validation studies for the liquefaction model. The function of single-phase analysis without interaction between soil and pore water in three-dimensional effective stress analysis code, which had been developed in this study, have been verified using by actual vibration test data. This fiscal year, some validation studies for the function of liquefaction analysis was conducted usig by actual measured data through the laboratory liquefaction test. (2)Supplemental Studies for JNC Second Progress Report. Through the JNC second progress report, it was considered that the stability of earthquake resistance of the engineered barrier system would be maintained under the major seismic event. At the same time we have recognized that several model parameters for joint-crack element, which takes into account for the response behavior of material discontinuous surface such as between overpack and buffer material, will become important in the response behavior of the whole EBS. This year, we have studied about several topics, which arise from technical discussion on JNC second progress report and we have discussed about total seismic stability of EBS. (3)Supplemental Studies for joint study with NRIDP. At this fiscal year, the joint study with National Research Institute for Disaster Prevention (NRIDP) will be final stage. UP to this day, incremental validation studies had been continued using by mesuared data obtained from vibration test. In this final stage, validation analysis has been conducted again using by current version new analysis code and maintained the validation data which will be contribute to the joint study mentioned above.

JAEA Reports

Influence of naturally-occurring heterogeneous complex-forming materials on the migration behavior of actinides in the geosphere (III)

Tochiyama, Osamu*

JNC TJ8400 2000-044, 53 Pages, 2000/02

JNC-TJ8400-2000-044.pdf:1.41MB

To estimate the polyelectrolyte effect and the effect of the heterogeneous composition of humic acids, the complex formation constants of Eu(III) and Ca(II) with Aldrich humic acid and polyacrylic acid were obtained, for Eu(10$$^{-8}$$ to 10$$^{-5}$$ M) by solvent extraction with TTA and TBP in xylene, for Ca (10$$^{-10}$$M) with TTA and TOPO in cyclohexane and for Ca(10$$^{-4}$$M) by using ion-selective electrode. By defining the apparent formation as $$beta_{alpha}$$ = [MR$$_{m}$$]/([M][R]), where [R] denotes the concentration of dissociated functional group, [M] and [MR$$_{m}$$] denote the concentration of free and bound metal ion and pcH is defined as-log[H], the values of log$$beta_{alpha}$$ have been obtained at pcH 4.8 - 5.5 in 0.1 - 1.0M NaClO$$_{4}$$ and NaCl. Log$$beta_{alpha}$$ of Eu-humate varied from 5.0 to 9.3 and that of Ca-humate from 2.0 to 3.4..For both humate and polyacrylate, log$$beta_{alpha}$$ increased with pcH or with the degree of dissociation. The increase in the ionic strength O.1 to 1.0 M decreased the log$$beta_{alpha}$$, the decrease in log$$beta_{alpha}$$ of Eu(III)-humate is 1.6, that of Eu(III), polyacrylate 0.7, that of Ca(II)-humate 1.9 and that of Ca(II)-polyacrylate 1.2. While the increase in the metal ion produced no effect on log$$beta_{alpha}$$ of polyacrylate, log$$beta_{alpha}$$ of humate decreased. Depending on the concentration of Eu(III), the coexistence of Ca(II) reduced log $$beta_{alpha}$$ of humate by 0 to 0.8. The dependence of log$$beta_{alpha}$$ of humate on the metal ion concentration suggests the coexistence of strong and weak binding sites in the hmnic acid.

JAEA Reports

None

Shinohara, Yoshinori*; Tsujimoto, Keiichi*

JNC TJ1400 2000-002, 280 Pages, 2000/02

JNC-TJ1400-2000-002.pdf:9.57MB

no abstracts in English

JAEA Reports

None

Shinohara, Yoshinori*; Tsujimoto, Keiichi*

JNC TJ1400 2000-001, 137 Pages, 2000/02

JNC-TJ1400-2000-001.pdf:4.19MB

no abstracts in English

JAEA Reports

None

JNC TN1400 99-019, 117 Pages, 1999/10

JNC-TN1400-99-019.pdf:5.25MB

no abstracts in English

JAEA Reports

None

Suzuki, Hideaki*; Fujita, Tomoo

JNC TN8400 99-016, 34 Pages, 1999/03

JNC-TN8400-99-016.pdf:14.8MB

no abstracts in English

JAEA Reports

None

Fusaeda, Shigeki*

JNC TJ1400 99-022, 19 Pages, 1999/02

JNC-TJ1400-99-022.pdf:1.15MB

no abstracts in English

JAEA Reports

None

Fusaeda, Shigeki*

JNC TJ1400 99-021, 86 Pages, 1999/02

JNC-TJ1400-99-021.pdf:9.09MB

no abstracts in English

JAEA Reports

Thermodynamic Date for Predicting Concentrations of AnO$$_{2}$$$$^{+}$$ and AnO$$_{2}$$$$^{2+}$$ Species in Geologic Environments

Choppin, G. R.*; Bronikowski, M.*; Chen, J.*; Byegard, J.*; Rai, D.*; Yui, Mikazu

JNC TN8400 99-012, 155 Pages, 1999/01

JNC-TN8400-99-012.pdf:5.53MB

This report provides thermodynamic data for predicting concentrations of pentavalent and hexavalent actinide species (AnO$$_{2}^{+}$$ and AnO$$_{2}^{2+}$$) in geologic environments, and contributes to an integration of the JNC chemical thermodynamic database, JNC-TDB (previously PNC-TDB), for the performance analysis of geological isolation system for high-level radioactive wastes. Thermodynamic data for the formation of complexes or compounds with hydroxide, chloride, fluoride, carbonate, nitrate, sulfate and phosphate are discussed in this report. The estimation of the stability constants by use of the Born equation is included. The Pitzer parameters for AnO$$_{2}^{+}$$ and AnO$$_{2}$$$$^{2+}$$, redox potentials and equilibrium constants of redox reactions for actinides are also included.

JAEA Reports

Thermodynamic Date for Predicting Concentrations of Pu(III), Am(III), and Cm(III) in Geologic Environments

Rai, D.*; Rao, L.*; Weger, H. T.*; GREGORY R.CHOPPI*; Yui, Mikazu

JNC TN8400 99-010, 95 Pages, 1999/01

JNC-TN8400-99-010.pdf:3.88MB

This report provides thermodynamic data for predicting concentrations of Pu(III), Am(III), and Cm(III) in geologic environments, and contributes to an integration of the JNC chemical thermodynamic database, JNC-TDB (previously PNC-TDB), for the performance analysis of geological isolation system for high-level radioactive wastes. Thermodynamic data for the formation of complexes or compounds with hydroxide, chloride, fluoride, carbonate, nitrate, sulfate and phosphate are discussed in this report. Where data for specific actinide(III) species are lacking, the data were selected based on chemical analogy to other trivalent actinides. In this study, the Pitzer ion-interaction model is mainly used to extrapolate thermodynamic constants to zero ionic strength at 25$$^{circ}$$C.

JAEA Reports

None

PNC TN1410 97-042, 65 Pages, 1997/11

PNC-TN1410-97-042.pdf:3.15MB

no abstracts in English

JAEA Reports

None

; Tanai, Kenji; Taniguchi, Wataru; Sakai, Yuichi*

PNC TN8410 95-027, 56 Pages, 1995/02

PNC-TN8410-95-027.pdf:2.88MB

None

16 (Records 1-16 displayed on this page)
  • 1