Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
宮本 喜晟; 塩沢 周策; 秋野 詔夫; 小川 益郎; 羽田 一彦; 椎名 保顕; 清水 三郎; 稲垣 嘉之; 小貫 薫; 文沢 元雄; et al.
Proc. of 9th Annual U. S.Hydrogen Meeting, p.367 - 369, 1998/00
本報告は原研における高温ガス炉の核熱利用系に関する開発研究の現状を述べたものである。原研では我が国初の高温ガス炉である高温工学試験研究炉(HTTR)に接続する高温核熱利用システムとして、早期に実用化が可能であるメタンの水蒸気改質による水素製造システムの技術開発を進めている。本報告では、HTTRに接続する水素製造システムの概念設計、水素製造システムの技術開発に必要な基本特性を明らかにするための要素技術試験の現状とこれまでに行った水蒸気改質基礎試験及び水の熱化学分解による水素製造(IS)プロセスの連続試験で得られた結果の概要を述べたものである。
羽賀 勝洋; 日野 竜太郎; 稲垣 嘉之; 羽田 一彦; 会田 秀樹; 関田 健司; 西原 哲夫; 山田 誠也*; 数土 幸夫
JAERI-Tech 96-053, 71 Pages, 1996/11
HTTRの目的の一つは高温核熱利用の有効性を実証することにある。HTTRという実炉に世界で初めて高温核熱利用系を接続して実証試験を実施するのに先立ち、機器の高性能化、運転・制御及び安全技術の実証、設計・安全評価解析コードの検証のための炉外技術開発試験が不可欠である。そこで、HTTRの最初の熱利用系として設計検討が進められている水蒸気改質水素製造システムについて、炉外技術開発試験計画を策定し、炉外技術開発試験のための試験装置の設計検討を行った。本報告は、試験装置の中核となる水蒸気改質器の設計検討の成果をまとめたものである。設計に当たっては、反応管が3本の場合と、コストダウンのために反応管を1本にした場合について、それぞれ反応特性、構造強度を解析評価し、その仕様と構造を定めた。
日野 竜太郎; 藤崎 勝夫; 小林 敏明; 会田 秀樹; 太田 幸丸; 大内 義弘; 関田 健司; 羽賀 勝洋; 加藤 道雄; 茂木 春義; et al.
JAERI-Tech 96-037, 45 Pages, 1996/09
HTTRという実炉を用いて世界で初めて高温核熱利用系を接続して実証試験を実施するのに先立ち、機器の高性能化、運転・制御及び安全技術の実証、設計・安全評価解析コードの検証のための炉外技術開発試験が不可欠である。そこで、HTTRの最初の熱利用系である水蒸気改質水素製造システムの炉外技術開発試験装置の設計検討を行った。本報告は、試験装置のなかで原子炉システムを模擬して約900Cの高温ヘリウムガスを水蒸気改質システムに供給するヘリウムガス供給系の設計についてまとめたものである。HENDEL全設備を調査してヘリウムガス供給系に再利用可能な機器を評価・整理した。また、新規に製作するヘリウムガス高温加熱器等の熱流動性能及び構造強度の評価を行い、その仕様と構造を定めた。
日野 竜太郎; 鈴木 邦彦; 羽賀 勝洋; 根小屋 真一; 深谷 清; 清水 三郎; 小貫 薫; 高田 昌二; 茂木 春義; 数土 幸夫
JAERI-Review 95-016, 115 Pages, 1995/10
HTTRの目的の一つは高温核熱利用の有効性を実証することである。HTTRに熱利用系を接続するのに先立ち、熱利用系及び構成機器の性能、熱利用系と原子炉システムとの整合性、安全性能などを検証する必要がある。そこで、HENDELを用いた炉外実証試験を提案し、これまで熱利用系の候補として挙げられてきた水素/メタノール製造システム(水蒸気改質システム)、熱化学法及び高温水蒸気電解法による水素製造システム、ガスタービン発電等について、R&Dの現状、技術的問題点、システムの概要などについて検討を行った。本報告はその検討結果を示すものであり、水蒸気改質システムは他のシステムより容易に設計・製作が可能であるため、HENDELに早期に設置し、炉外実証試験を通して、システム特性の把握、運転制御法の確立等を行うとともに、将来の核熱利用系に対して汎用性のある高温隔離弁、受動的冷却型蒸気発生器などの各種安全機器・技術を検証・高度化することができることを示した。
E.Achenbach*
JAERI-Review 95-008, 98 Pages, 1995/06
本レポートは、著者が原研の研究員招聘制度により2月2日~3月23日までの7週間、高温工学部に滞在したときに行った4回の講演をまとめたものである。著者が所属するユーリッヒ研究所(KFA)のエネルギープロセス工学研究所は、最近になって高温ガス炉に関する技術開発から燃料電池の技術開発へと研究項目を変更したが、多くの点で原研の研究と共通点を持っている。とくに、講演された、(1)原研の核熱利用システムとKFAの固体電解質型燃料電池(SOFC)に適用される水蒸気改質システムの研究、(2)原研における高温水蒸気電解とその逆反応であるKFAのSOFCに関する技術開発とモデル化、(3)原研の高温熱交換器とKFAのSOFCマニホールドにおける流量配分等のシミュレーション、(4)熱及び物質伝達の基礎研究については、相互に注目する分野である。本レポートは原研との今後の討議の下地として、そして原研の開発研究を促進・触発するものとして役立つものと考える。
日野 竜太郎; 宮本 喜晟
日本原子力学会誌, 37(11), p.1042 - 1049, 1995/00
被引用回数:2 パーセンタイル:27.69(Nuclear Science & Technology)高温水蒸気電解法は最高1000Cの水蒸気を電解して水素を製造する方法で、固体電解質型燃料電池の逆反応を利用する先進的な電解水素製造法である。原研では、高温ガス炉の熱利用系開発の一環として、12セル構造の実用的な円筒型固体電解要素を用いて実験室規模の試験を進めてきた。固体電解要素は多孔質セラミックス管表面にセルを直列に成膜したもので、電解質にはイットリア安定化ジルコニアを用いている。試験では、アルゴンガスに水蒸気を含有させて電解要素に導き、DC電源からの電力で水蒸気を電化させた。電解温度は850
C~950
Cの範囲の一定温度に調節した。水素発生量は電解電圧及び電解温度の上昇とともに増加し、950
Cにおいて最高7Nl/hで水素を発生させることができた。実験データを基にして水素発生速度と電流密度の関係式を導出するとともに、80~100mA/cm
の範囲の電流密度での電解条件で高いエネルギー効率を実現できた。