Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 255

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Background radiation monitoring via manned helicopter and development of technology for radiation monitoring via unmanned airplane for application of nuclear emergency response technique in the fiscal year 2022 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Arai, Yoshinori*; et al.

JAEA-Technology 2023-026, 161 Pages, 2024/03

JAEA-Technology-2023-026.pdf:14.66MB

By the accident at Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (FDNPS), caused by tsunami triggered by the 2011 off the Pacific coast of Tohoku Earthquake, a large amount of radioactive material was released into the surrounding environment. After the accident, Airborne Radiation Monitoring (ARM) via manned helicopter has been utilized as a method to quickly and extensively measure radiation distribution surrounding FDNPS. In order to utilize ARM and to promptly provide the results during a nuclear emergency, information on background radiation levels, topographical features, and controlled airspace surrounding nationwide nuclear facilities have been prepared in advance. In the fiscal year 2022, we conducted ARM around the Mihama Nuclear Power Station of Kansai Electric Power Company (KEPCO), the Tsuruga Power Station of Japan Atomic Power Company (JAPC), and the Ikata Power Station of Shikoku Electric Power Company (YONDEN), and prepared information on background radiation doses and controlled airspace. In addition, we have developed an aerial radiation detection system via unmanned airplane, which is expected to be an alternative to ARM, during a nuclear emergency. This report summarizes the results and technical issues identified.

Journal Articles

Development of an RPV cooling system for HTGRs

Takamatsu, Kuniyoshi

Kakushinteki Reikyaku Gijutsu; Mekanizumu Kara Soshi, Shisutemu Kaihatsu Made, p.179 - 183, 2024/01

The HTGR has excellent safety, and even in the event of an accident where the reactor coolant is lost, the decay heat and residual heat in the core can be dissipated from the outer surface of the RPV, so the fuel temperature never exceeds the limit value, and the core stabilizes. On the other hand, regarding the cooling system that transports the heat emitted from the RPV to the final heat sink, an active cooling system using forced circulation of water by a pump, etc., and a passive cooling system using natural circulation of the atmosphere have been proposed. However, there is a problem that the cooling performance is affected by the operation of dynamic equipment and weather conditions. This paper presents an overview of a new cooling system concept using radiative cooling, which has been proposed to solve the above problem, and introduces the results of analysis and experiments aimed at confirming the feasibility of this concept.

Journal Articles

Development of a statistical evaluation method for core hot spot temperature in sodium-cooled fast reactor under natural circulation conditions

Doda, Norihiro; Igawa, Kenichi*; Iwasaki, Takashi*; Murakami, Satoshi*; Tanaka, Masaaki

Nuclear Engineering and Design, 410, p.112377_1 - 112377_15, 2023/08

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To enhance the safety of sodium-cooled fast reactors, the decay heat in the core must be removed by natural circulation even if the AC power supply to the forced circulation equipment is lost. Under natural circulation conditions, sodium flow is driven by buoyancy, and flow velocity and temperature distribution influence each other. Thus, it is difficult to evaluate the core hot spot temperature by deterministically considering the uncertainties affecting flow and heat. In this study, a statistical evaluation method is developed for the core hot spot temperature by using Monte Carlo sampling methods. The applicability of the core hotspot evaluation method was confirmed in three representative events during natural circulation decay heat removal operations in loop-type sodium-cooled fast reactors.

Journal Articles

Improvement of cooling performance of reactor pressure vessel using passive cooling

Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

A fundamental study on the safety of a passive cooling system for the RPV with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. A comparison of the Grashof number between the actual cooling system and the experimental apparatus confirmed that both were turbulent, and the experimental results as a scale model are valuable. Moreover, the experimental results confirmed that the heat generated from the surface of the RPV during the rated operation can be removed.

Journal Articles

Validation study of thermal-hydraulics analysis code SPIRAL to a large-scale wire-wrapped fuel assembly sodium test at a low Reynolds number flow regime

Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Gerschenfeld, A.*

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

Removal of core decay heat by utilizing natural circulation is expected as a significant measure to enhance the safety of sodium-cooled fast reactors (SFRs). Accurate evaluation of the temperature distribution in the fuel assembly (FA) at the low Re regime in natural circulation operation is demanded. A detailed thermal-hydraulics analysis code named SPIRAL has been developed to clarify thermal-hydraulic phenomena in the FA at various operation conditions. In this study, SPIRAL with the hybrid turbulence model was applied to analyze a large-scale fuel assembly experiment of a 91-pin bundle for two cases at the mixed and the natural convection conditions respectively in low Re regime with heat transfer from outside of the FA. The applicability of the SPIRAL to the thermal-hydraulics evaluation of FA at mixed and natural convection conditions was confirmed by the comparisons of temperatures predicted by SPIRAL with those measured in the experiment.

Journal Articles

Comparison on safety features among HTGR's Reactor Cavity Cooling Systems (RCCSs)

Takamatsu, Kuniyoshi; Funatani, Shumpei*

Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 17 Pages, 2023/04

The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Therefore, the authors concluded that the proposed RCCS based on atmospheric radiation has the advantage that the temperature of the RPV can be stably maintained against disturbances in the outside air (ambient air). Moreover, methodology to utilize all the heat emitted from the RPV surface for increasing the degree of waste-heat utilization was discussed.

JAEA Reports

Background radiation monitoring via manned helicopter for application of technique of nuclear emergency response in the fiscal year 2021 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Hokama, Tomonori; et al.

JAEA-Technology 2022-028, 127 Pages, 2023/02

JAEA-Technology-2022-028.pdf:15.21MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report has summarized the knowledge noted above achieved by the aerial radiation monitoring around Ohi and Takahama nuclear power stations. In addition, the examination's progress aimed at introducing airborne radiation monitoring via an unmanned plane during a nuclear disaster and the technical issues are summarized in this report.

Journal Articles

Study on heat transfer characteristics of reactor cavity cooling system using radiation

Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi

Yamanashi Koenkai 2022 Koen Rombunshu (CD-ROM), 6 Pages, 2022/10

A fundamental study on the safety of a passive cooling system for the reactor pressure vessel (RPV) with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. As a result of the experiments, we succeeded in visualizing the natural convection in the experimental apparatus in detail.

Journal Articles

Development of 1D-CFD coupling method through benchmark analyses of SHRT tests in EBR-II

Yoshimura, Kazuo; Doda, Norihiro; Tanaka, Masaaki; Fujisaki, Tatsuya*; Murakami, Satoshi*; Vilim, R. B.*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03

In Japan Atomic Energy Agency, the multilevel simulation system which enables consistent evaluation from the whole plant behavior to the local phenomena is being developed to optimize plant design and enhance the safety of sodium-cooled fast reactors. To validate the coupling method in the MLS system, the 1D-CFD coupling method using Super-COPD for 1D plant dynamics analysis and Fluent for multi-dimensional CFD analysis was applied to the analyses of loss of flow tests in EBR-II. It was confirmed that it could predict multi-dimensional thermal-hydraulic phenomena such as thermal stratification in the upper plenum, Z-shaped pipe, and cold pool, holding the whole plant behavior simultaneously. Moreover, the applicability of the 1D-CFD coupling method to the evaluation of the phenomena in natural circulation conditions was confirmed by comparing the results of the 1D-CFD couple analyses and the measured data.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2020 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2021-020, 138 Pages, 2021/11

JAEA-Technology-2021-020.pdf:17.11MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Tsuruga and Mihama nuclear power station, research reactors in Kindai University Atomic Energy Research Institute and Institute for Integrated Radiation and Nuclear Science, Kyoto University. In addition, examination's progress aimed at introduction of airborne radiation monitoring via unmanned plane during nuclear disaster and the technical issues are summarized in this report.

Journal Articles

Comparisons between passive RCCSs on degree of passive safety features against accidental conditions and methodology to determine structural thickness of scaled-down heat removal test facilities

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 162, p.108512_1 - 108512_10, 2021/11

 Times Cited Count:1 Percentile:15.09(Nuclear Science & Technology)

The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Next, simulations on accidental conditions, such as increasing average heat-transfer coefficient via natural convection due to natural disasters, were performed with STAR-CCM+, and methodology to control the amount of heat removal was discussed. As a result, a new RCCS based on atmospheric radiation is recommended because of the excellent degree of passive safety features/conditions, and the amount of heat removal by heat transfer surfaces which can be controlled. Finally, methodology to determine structural thickness of scaled-down heat removal test facilities for reproducing natural convection and radiation was developed, and experimental methods by using pressurized and decompressed chambers was also proposed.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2019 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; Ishizaki, Azusa; et al.

JAEA-Technology 2020-019, 128 Pages, 2021/02

JAEA-Technology-2020-019.pdf:15.75MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials around FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace around nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during accidents of the facilities. Furthermore, the airborne radiation monitoring has been conducted in Integrated Nuclear Emergency Response Drill to increase effectiveness of the monitoring. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Higashidori nuclear power station, the nuclear fuel reprocessing plant in Rokkasho village and Shika nuclear power station, the full details of the aerial radiation monitoring in Integrated Nuclear Emergency Response Drill in the fiscal 2019. In addition, examination's progress aimed at introduction of airborne radiation monitoring using unmanned helicopter during nuclear disaster and the technical issues are summarized in this report.

Journal Articles

Comparison between passive reactor cavity cooling systems based on atmospheric radiation and atmospheric natural circulation

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 151, p.107867_1 - 107867_11, 2021/02

 Times Cited Count:2 Percentile:29.53(Nuclear Science & Technology)

A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We compared the RCCS using atmospheric radiation with that using atmospheric natural circulation in terms of passive safety features and control methods for heat removal. The magnitude relationship for passive safety features is heat conduction $$>$$ radiation $$>$$ natural convection. Therefore, the magnitude for passive safety features of the former RCCS can be higher than that of the latter RCCS. In controlling the heat removal, the former RCCS changes the heat transfer area only. On the other hand, the latter RCCS needs to change the chimney effect. It is necessary to change the air resistance in the duct. Therefore, the former RCCS can control the heat removal more easily than the latter RCCS.

Journal Articles

Distribution map of natural gamma-ray dose rates for studies of the additional exposure dose after the Fukushima Dai-ichi Nuclear Power Station accident

Sanada, Yukihisa; Yoshimura, Kazuya; Urabe, Yoshimi*; Iwai, Takeyuki*; Katengeza, E. W.*

Journal of Environmental Radioactivity, 223-224, p.106397_1 - 106397_9, 2020/11

 Times Cited Count:14 Percentile:58.11(Environmental Sciences)

Journal Articles

Japanese population dose from natural radiation

Omori, Yasutaka*; Hosoda, Masahiro*; Takahashi, Fumiaki; Sanada, Tetsuya*; Hirao, Shigekazu*; Ono, Koji*; Furukawa, Masahide*

Journal of Radiological Protection, 40(3), p.R99 - R140, 2020/09

 Times Cited Count:23 Percentile:76.17(Environmental Sciences)

UNSCEAR and the Nuclear Safety Research Association report the annual effective doses from cosmic rays, terrestrial radiation, inhalation and ingestion from natural sources. In this study, radiation doses from natural radiation sources in Japan were reviewed with the latest knowledge and data. Total annual effective dose from cosmic-ray exposure can be evaluated as 0.29 mSv. The annual effective dose from external exposure to terrestrial radiation for Japanese population can be evaluated as 0.33 mSv using the data of nationwide survey by the National Institute of Radiological Sciences. The Japan Chemical Analysis Center (JCAC) performed the nationwide radon survey using a unified method for radon measurements in indoor, outdoor and workplace. The annual effective dose for radon inhalation was estimated using a current dose conversion factor, and the values were estimated to be 0.50 mSv. The annual effective dose from thoron was reported as 0.09 mSv by UNSCEAR and then the annual effective dose from inhalation can be described as 0.59 mSv. According to the report of large scale survey of foodstuff by JCAC, the effective dose from main radionuclides due to dietary intake can be evaluated to be 0.99 mSv. Finally, Japanese population dose from natural radiation can be assessed as 2.2 mSv which is near to the world average value of 2.4 mSv.

Journal Articles

Study on cooling process in a reactor vessel of sodium-cooled fast reactor under severe accident; Velocity measurement experiments simulating operation of decay heat removal systems

Tsuji, Mitsuyo; Aizawa, Kosuke; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 5 Pages, 2020/08

The water experiments using a 1/10 scale experimental apparatus simulating the reactor vessel of SFR were conducted to investigate the natural circulation phenomena in a reactor vessel. In this paper, the natural circulation flow field in the reactor vessel was measured by the Particle Image Velocimetry (PIV) method. The PIV measurement was carried out under the operation of the dipped-type direct heat exchanger (DHX) installed in the upper plenum when 20% of the core fuel fell to the lower plenum and accumulated on the core catcher. From the results of PIV measurement, it was quantitatively confirmed that the upward flow occurred at the center region of the lower and upper plenums. In addition, the downward flows were confirmed near the reactor vessel wall in the upper plenum and through outermost layer of the simulated core in the lower plenum. Moreover, the relationship between the temperature field and the velocity field was investigated in order to understand the natural circulation phenomenon in the reactor vessel. From the above results, it was confirmed that the natural circulation cooling path was established under the dipped-type DHX operation.

Journal Articles

Unsteady natural convection in a cylindrical containment vessel (CIGMA) with external wall cooling; Numerical CFD simulation

Hamdani, A.; Abe, Satoshi; Ishigaki, Masahiro; Shibamoto, Yasuteru; Yonomoto, Taisuke

Energies (Internet), 13(14), p.3652_1 - 3652_22, 2020/07

 Times Cited Count:6 Percentile:21.88(Energy & Fuels)

Journal Articles

Comparative methodology between actual RCCS and downscaled heat-removal test facility

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 133, p.830 - 836, 2019/11

 Times Cited Count:2 Percentile:20.94(Nuclear Science & Technology)

A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. Moreover, the authors started experiment research with using a scaled-down heat-removal test facility. Therefore, this study propose a comparative methodology between an actual RCCS and a scaled-down heat-removal test facility.

Journal Articles

Fuel debris' air cooling analysis using a lattice Boltzmann method

Onodera, Naoyuki; Idomura, Yasuhiro; Kawamura, Takuma; Uesawa, Shinichiro; Yamashita, Susumu; Yoshida, Hiroyuki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 6 Pages, 2019/05

A dry method is one of practical methods for decommissioning the TEPCO's Fukushima Daiichi Nuclear Power Station. Japan Atomic Energy Agency (JAEA) has been evaluating the air cooling performance by using the JUPITER code. However, the JUPITER code requires a large computational cost to capture debris' structures. To accelerate such CFD analyses, we use the CityLBM code, which is based on the lattice Boltzmann method (LBM) and is highly optimized for GPUs. The CityLBM code is validated against free convective heat transfer experiments at JAEA, and the similar accuracy as the JUPITER code is confirmed regarding the prediction capability of heat transfer and the resulting temperature distributions. It is also shown that the elapse time of a CityLBM simulation on GPUs is reduced to 1/6 compared with that of the corresponding JUPITER simulation on CPUs with the same number of GPUs and CPUs. The results show that the LBM is promising for accelerating thermal convective simulations.

Journal Articles

Establishment of numerical model to investigate heat transfer and flow characteristics by using scale model of vessel cooling system for HTTR

Takada, Shoji; Ngarayana, I. W.*; Nakatsuru, Yukihiro*; Terada, Atsuhiko; Murakami, Kenta*; Sawa, Kazuhiko*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 13 Pages, 2019/05

In the loss of core cooling test using HTTR, a technical issue is to improve prediction accuracy of temperature distribution of components in vessel cooling system (VCS). An establishment of reasonable 2D model was started by using numerical code FLUENT, which was validated using the test data by 1/6 scale model of VCS for HTTR. The pressure vessel (PV) temperature was set around 200$$^{circ}$$C attributed to relatively high ratio of natural convection heat transfer around 20% in total heat removal, which is useful for code to experiment benchmark to improve prediction accuracy. It is necessary to confirm heat transfer flow characteristics around the top of PV which is heated up by natural convection flow which was considered to be affected by separation, re-adhesion and transition flow. The k-$$omega$$-SST model was selected for turbulent calculation attributed to predict the effects mentioned above adequately. The numerical results using the k-$$omega$$-SST model reproduced the temperature distribution of PV especially the top region which is considered to be affected by separation, re-adhesion and transition flow in contract to that using k-$$varepsilon$$ model which does not account the effects.

255 (Records 1-20 displayed on this page)