Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sanada, Yukihisa; Yoshimura, Kazuya; Urabe, Yoshimi*; Iwai, Takeyuki*; Katengeza, E. W.*
Journal of Environmental Radioactivity, 223-224, p.106397_1 - 106397_9, 2020/11
Futemma, Akira; Sanada, Yukihisa; Komiya, Tomokazu; Iwai, Takeyuki*; Seguchi, Eisaku*; Matsunaga, Yuki*; Kawabata, Tomoki*; Haginoya, Masashi*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.
JAEA-Technology 2019-017, 95 Pages, 2019/11
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background radiation monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in the aerial monitoring around FDNPS against nuclear emergency response. The results of monitoring around Shimane and Hamaoka Nuclear Power Stations in the fiscal 2018 were summarized in this report. In addition, technical issues were described.
Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Komiya, Tomokazu; Iwai, Takeyuki*; Seguchi, Eisaku*; Matsunaga, Yuki*; Kawabata, Tomoki*; Haginoya, Masashi*; Hiraga, Shogo*; et al.
JAEA-Technology 2019-016, 116 Pages, 2019/11
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been conducted around FDNPS. The results in the fiscal 2018 were summarized in this report. Discrimination method of gamma rays from Rn-progenies was also utilized to evaluate their effect on aerial radiation monitoring. In addition, analysis taken topographical effects into consideration was applied to previous results of airborne monitoring to improve the precision of conventional method.
Miwa, Kazuji; Terasaka, Yuta; Ochi, Kotaro; Futemma, Akira; Sasaki, Miyuki; Hirouchi, Jun
Nippon Genshiryoku Gakkai-Shi, 61(9), p.687 - 691, 2019/09
This report summarizes the contents of the session of the Health Physics and Environment Science Division, which was held in Atomic Energy Society of Japan 2019 Spring Meeting. In this session, six students and young researchers who engaged in the field of nuclear energy and radiation gave a lecture about health physics and environmental science research through their expertise. After the all presentations end, we took discussion time about the issues and future development in this field with all attendees. In this report, we summarized each lecture outline and discussion contents.
Futemma, Akira; Sanada, Yukihisa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.
JAEA-Technology 2018-016, 98 Pages, 2019/02
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in Fukushima against nuclear emergency response. The results of monitoring around Tomari, Kashiwazaki-Kariwa and Genkai Nuclear Power Station in the fiscal 2017 were summarized in this report. In addition, technical issues were described.
Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; et al.
JAEA-Technology 2018-015, 120 Pages, 2019/02
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. The results in the fiscal 2017 were summarized in this report. In addition, we developed and systemized the discrimination technique of the Rn-progenies. The accuracy of aerial radiation monitoring was evaluated by taking into consideration GPS data error.
Sanada, Yukihisa; Katata, Genki*; Kaneyasu, Naoki*
Isotope News, (759), p.18 - 21, 2018/10
no abstracts in English
Sanada, Yukihisa; Mori, Airi; Iwai, Takeyuki; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo; Sato, Yoshiharu; et al.
JAEA-Technology 2017-035, 69 Pages, 2018/02
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We carried out the background monitoring around the nuclear power stations of the whole country to apply a technique of the airborne radiation monitoring that is cultivated in Fukushima as a technology of nuclear emergency response. This result of the aerial radiation monitoring using the manned helicopter around Ooi, Takahama and Ikata Nuclear Power Station and in the fiscal 2016 were summarized in the report. In addition, technical issues were described.
Sanada, Yukihisa; Mori, Airi; Iwai, Takeyuki; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo; Sato, Yoshiharu; et al.
JAEA-Technology 2017-034, 117 Pages, 2018/02
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. This result of the aerial radiation monitoring using the manned helicopter in the fiscal 2016 were summarized in the report. In addition, we developed the discrimination technique of the Rn-progenies. The accuracy of aerial radiation monitoring was evaluated by taking into consideration GPS position error.
Sanada, Yukihisa; Ishizaki, Azusa; Nishizawa, Yukiyasu; Urabe, Yoshimi*
Bunseki Kagaku, 66(3), p.149 - 162, 2017/03
Times Cited Count:7 Percentile:51.56(Chemistry, Analytical)The Great East Japan Earthquake that occurred on 11 March 2011 generated a series of large tsunami waves that caused serious damage to the Fukushima Dai-ichi Nuclear Power Station, following which a large amount of radioactive material was discharged from the nuclear power plant into the environment. The airborne radiation measurement using a manned helicopter was applied to measure the radiation distribution immediately after accident of the Fukushima Dai-ichi Nuclear Power Station as technique to quickly measure the radiation distribution in the wide area. In Japan, this technique was researched and developed in the 1980s. However, this technique and system were not applied immediately after the accident because standardization of analysis was not established and the Japanese system became deteriorated. This technique is important for post-accident of nuclear facility. We summarized the methods of the airborne radiation measurement using a manned helicopter. In addition, measurement results of dose rate distribution at the Fukushima Dai-ichi Nuclear Power Station was shown in this paper.
Shikaze, Yoshiaki; Nishizawa, Yukiyasu; Sanada, Yukihisa; Torii, Tatsuo; Jiang, J.*; Shimazoe, Kenji*; Takahashi, Hiroyuki*; Yoshino, Masao*; Ito, Shigeki*; Endo, Takanori*; et al.
Journal of Nuclear Science and Technology, 53(12), p.1907 - 1918, 2016/12
Times Cited Count:18 Percentile:4.49(Nuclear Science & Technology)The Compton camera was improved for use with the unmanned helicopter. Increase of the scintillator array from 44 to 8
8 and expanse of the distance between the two layers contributed to the improvements of detection efficiency and angular resolution, respectively. Measurements were performed over the riverbed of the Ukedo river of Namie town in Fukushima Prefecture. By programming of flight path and speed, the areas of 65 m
60 m and 65 m
180 m were measured during about 20 and 30 minutes, respectively. By the analysis the air dose rate maps at 1 m height were obtained precisely with the angular resolution corresponding to the position resolution of about 10 m from 10 m height. Hovering flights were executed over the hot spot areas for 10-20 minutes at 5-20 m height. By using the reconstruction software the
-ray images including the hot spots were obtained with the angular resolution same as that evaluated in the laboratory (about 10
).
Sanada, Yukihisa; Munakata, Masahiro; Mori, Airi; Ishizaki, Azusa; Shimada, Kazumasa; Hirouchi, Jun; Nishizawa, Yukiyasu; Urabe, Yoshimi; Nakanishi, Chika*; Yamada, Tsutomu*; et al.
JAEA-Research 2016-016, 131 Pages, 2016/10
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. In addition, background dose rate monitoring was conducted around Sendai Nuclear Power Station. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2015 were summarized in the report.
Sanada, Yukihisa; Mori, Airi; Ishizaki, Azusa; Munakata, Masahiro; Nakayama, Shinichi; Nishizawa, Yukiyasu; Urabe, Yoshimi; Nakanishi, Chika; Yamada, Tsutomu; Ishida, Mutsushi; et al.
JAEA-Research 2015-006, 81 Pages, 2015/07
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (NPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPP. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2014 were summarized in the report.
Sanada, Yukihisa; Yamada, Tsutomu; Ishibashi, Satoshi; Torii, Tatsuo
Dai-57-Kai Jido Seigyo Rengo Koenkai Koen Rombunshu (USB Flash Drive), p.695 - 698, 2014/11
The Great East Japan Earthquake that occurred on March 11, 2011, generated a series of large tsunami waves that caused serious damage to the Fukushima Daiichi Nuclear Power Plant, following which a large amount of radioactive material was discharged from the nuclear power plant into the environment. In JAEA and JAXA, UARMS (Unmanned Airplane Radiation Monitoring System) was developing as collaborative research. Here, we report about an aerial radiation monitoring technology for UARMS.
Nagaoka, Toshi; Moriuchi, Shigeru
Hoken Butsuri, 25, p.391 - 398, 1990/00
no abstracts in English
Moriuchi, Shigeru; Nagaoka, Toshi; Sakamoto, Ryuichi; Tsutsumi, Masahiro; Saito, Kimiaki; Amano, Hikaru; Matsunaga, Takeshi; Yanase, Nobuyuki; Kasai, Atsushi
JAERI-M 89-017, 82 Pages, 1989/02
no abstracts in English
; ; ;
Keikinzoku Yosetsu, 25(9), p.29 - 39, 1987/09
no abstracts in English
Genshiryoku Kogyo, 16(6), p.68 - 72, 1970/00
no abstracts in English
; ; ; *; *
Hihakai Kensa, 20(3), p.121 - 126, 1970/00
no abstracts in English
; ; ;
Radioisotopes, 18(11), p.488 - 492, 1969/11
no abstracts in English