Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 1908

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Continuous improvement activities on nuclear facility maintenance in Nuclear Science Research Institute of Japan Atomic Energy Agency in 2021

Task Force on Maintenance Optimization of Nuclear Facilities

JAEA-Technology 2022-006, 80 Pages, 2022/06

JAEA-Technology-2022-006.pdf:4.24MB

The Task force on maintenance optimization of nuclear facilities was organized in the Nuclear Science Research Institute (NSRI) of Japan Atomic Energy Agency (JAEA) since November 2020, in order to adequately respond to "the New nuclear regulatory inspection system since FY 2020" and to continuously improve the facility maintenance activities. In 2021, the task force has studied (1) optimization of the importance classification on maintenance and inspection of nuclear facilities, and (2) improvement in setting and evaluation of the performance indicators on safety, maintenance and quality management activities, considering "the Graded approach" that is one of the basic methodologies in the new nuclear regulatory inspection system. Each nuclear facility (research reactors, nuclear fuel material usage facilities, others) in the NSRI will steadily improve their respective safety, maintenance and quality management activities, referring the review results suggested by the task force.

JAEA Reports

Fluorination method for classification of the waste generated by fuel debris removal (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hitachi-GE Nuclear Energy*

JAEA-Review 2022-003, 126 Pages, 2022/06

JAEA-Review-2022-003.pdf:8.01MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project. Among the adopted proposals in FY2019, this report summarizes the research results of the "Fluorination Method for Classification of the Waste Generated by Fuel Debris Removal" conducted in FY2020.

Journal Articles

Single crystal growth and magnetic properties of noncentrosymmetric antiferromagnet Mn$$_3$$IrSi

Onuki, Yoshichika*; Kaneko, Yoshio*; Aoki, Dai*; Nakamura, Ai*; Matsuda, Tatsuma*; Nakashima, Miho*; Haga, Yoshinori; Takeuchi, Tetsuya*

Journal of the Physical Society of Japan, 91(6), p.065002_1 - 065002_2, 2022/06

Journal Articles

Precise magnetization measurements down to 500 mK using a miniature $$^3$$He cryostat and a closed-cycle $$^3$$He gas handling system installed in a SQUID magnetometer without continuous-cooling functionality

Shimamura, Kazutoshi*; Wajima, Hiroki*; Makino, Hayato*; Abe, Satoshi*; Haga, Yoshinori; Sato, Yoshiaki*; Kawae, Tatsuya*; Yoshida, Yasuo*

Japanese Journal of Applied Physics, 61(5), p.056502_1 - 056502_7, 2022/05

Journal Articles

Simultaneous determination of zircon crystallisation age and temperature; Common thermal evolution of mafic magmatic enclaves and host granites in the Kurobegawa granite, central Japan

Yuguchi, Takashi*; Yamazaki, Hayato*; Ishibashi, Kozue*; Sakata, Shuhei*; Yokoyama, Tatsunori; Suzuki, Satoshi*; Ogita, Yasuhiro; Sando, Kazusa*; Imura, Takumi*; Ono, Takeshi*

Journal of Asian Earth Sciences, 226, p.105075_1 - 105075_9, 2022/04

Simultaneous determination of the U-Pb age of zircon and concentration of titanium in a single analysis spot, using inductively coupled plasma mass spectrometry with laser ablation sample introduction, produces paired age and temperature data of zircon crystallisation, potentially revealing time-temperature ($$t-T$$) histories for evolved magma. The Kurobegawa granite, central Japan, contains abundant mafic magmatic enclaves (MMEs). We applied this method to evaluate MMEs and their host (enclosing) granites. Cooling behaviour common to both MMEs and host rocks was found between 1.5 and 0.5 Ma. Rapid cooling from the zircon crystallisation temperature to the closure temperature of biotite K-Ar system was within $$sim$$1 million year. Combining the obtained $$t-T$$ paths of MMEs and host rocks with petrological information can provide insights into magma chamber processes. This suggests that MME flotation, migration, and spread through the magma chamber ceased at 1.5-0.5 Ma, indicating the emplacement age of the Kurobegawa granitic pluton, as no large-scale reheating episodes have occurred since then.

Journal Articles

Experimental and analytical investigations on aerosol washout in a large vessel with high spray coverage ratio simulating PWR containment spray

Sun, Haomin; Leblois, Y.*; Gelain, T.*; Porcheron, E.*

Journal of Nuclear Science and Technology, 14 Pages, 2022/04

In severe accident scenarios of PWR, containment spray can be employed to washout the aerosol of radioactive materials, retaining them in the containment. Therefore, it is crucial to correctly predict the washout efficiency for safety assessment. For a PWR, a high spray coverage ratio ($$>$$ 84%-95%) is required. However, experimental studies on the washout with such a high coverage ratio in a large vessel are quite limited. To understand such a washout phenomenon for model development, aerosol washout experiments are performed in a large vessel with not only aerosol measurements but also spray droplet characterizations. The spray coverage ratios are experimentally confirmed to be compatible with a real PWR. The washout features are investigated in detail. The model in MELCOR is examined using the measured aerosol removal rate, showing the removal rate tendency against particle diameters being reproduced. Although a significant underestimation occurs for large particles, a satisfactory agreement is obtained for smaller ones ($$<$$0.52 $$mu$$m in diameter) corresponding to the minimum removal rate and around.

Journal Articles

Abrupt change in electronic states under pressure in new compound EuPt$$_3$$Al$$_5$$

Koizumi, Takatsugu*; Honda, Fuminori*; Sato, Yoshiki*; Li, D.*; Aoki, Dai*; Haga, Yoshinori; Gochi, Jun*; Nagasaki, Shoko*; Uwatoko, Yoshiya*; Kaneko, Yoshio*; et al.

Journal of the Physical Society of Japan, 91(4), p.043704_1 - 043704_5, 2022/04

JAEA Reports

Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2021-070, 98 Pages, 2022/03

JAEA-Review-2021-070.pdf:4.75MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration" conducted in FY2020. The present study aims to understand migration behaviors of radionuclides in relation to the properties of concrete materials altered due to leaching, to develop a model to simulate the migration behaviors based on the experimental findings, and to analyze waste management scenarios for radioactive concrete. The focus of the study is the underground concrete structures of Fukushima Daiichi Nuclear Power Station, which is in contact with contaminated water.

Journal Articles

Development of a miniature electromagnet probe for the measurement of local velocity in heavy liquid metals

Ariyoshi, Gen; Obayashi, Hironari; Sasa, Toshinobu

Journal of Nuclear Science and Technology, 18 Pages, 2022/03

Electromagnetic induction method is one of the effective techniques for local velocity measurement in heavy liquid metals. Ricou and Vives' probe and Von Weissenfluh's probe are famous instrumentations using a permanent magnet. However, sensitivity and measurement volume of the probes show unexpected variation since demagnetization of the magnet is occurred by temperature increase up to the Curie temperature. In this study, electromagnetic probe incorporating a miniature electromagnet was newly developed to overcome such unexpected variation. The diameter and the length of the sensor was 6 mm and 155 mm, respectively. The sensitivity and the measurement volume of the probe were assessed by measurement of local velocity of flowing mercury in a square channel. To clarify the validity for the measured velocity profiles, numerical velocity profiles were calculated and compared with experiment. And the validity for the measured velocity profiles were confirmed by calculated result.

Journal Articles

Magnetic Bragg peak enhancement under ultrasound injection

Shamoto, Shinichi*; Akatsu, Mitsuhiro*; Matsuura, Masato*; Kawamura, Seiko; Harii, Kazuya*; Ono, Masao*; Chang, L.-J.*; Ito, Takashi; Nemoto, Yuichi*; Ieda, Junichi

Physical Review Research (Internet), 4(1), p.013245_1 - 013245_7, 2022/03

Ultrasound injection effect on a magnetic Bragg peak of yttrium iron garnet has been studied by quasielastic neutron scattering. The magnetic Bragg peak is vastly enhanced with decreasing temperature. The energy width increases proportionally to the square root of the sample temperature increase induced by the ultrasound injection. Because the magnetic Bragg peak is enhanced by the lattice vibration, the enhancement is expected to relate to the spin-lattice coupling closely. An observed sharp drop above 100 K in the longitudinal mode suggests the degradation of the spin-lattice coupling. It is consistent with the decline of spin Seebeck effect with increasing temperature above 100 K, proving the degradation mechanism by the spin-lattice coupling.

Journal Articles

Gas entrainment phenomenon from free liquid surface in a sodium-cooled fast reactor; Measurements and evaluation on a gas core growth form the liquid surface

Uchida, Mao*; Alzahrani, H.*; Shiono, Mikihito*; Sakai, Takaaki*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03

Gas entrainment from cover gas is one of key issues for sodium-cooled fast reactors design to prevent unexpected effects to core reactivity. A vortex model based evaluation method has been developed to evaluate the surface vortex gas core growth at the free surface in the reactor vessel. In this study, water experiments were performed to clarify the prediction accuracy for the vortex gas core growth during the vortex drift motion using a circulating water tunnel with an open flow channel test section. Gas core growth were predicted by applying the evaluation method to the numerical analyses performed in the same geometry of the experiments, and compared with the experimental results. It was observed the gas core growth became large at downstream region where downward velocity became large in experiment. However, the gas core length which were predicted from numerical result showed a discrepancy with the experimental result on the peak position and an overestimation of peak value.

JAEA Reports

Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute for Materials Science*

JAEA-Review 2021-059, 71 Pages, 2022/02

JAEA-Review-2021-059.pdf:4.25MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms" conducted in FY2020. The present study aims to develop innovative diagnostic techniques such as accelerated test specimens and on-site genetic testing for microbially induced and accelerated corrosion of metallic materials (microbially influenced corrosion, MIC), and to identify the conditions that promote MIC at 1F for proposing methods to prevent MIC through water quality and environmental control. We also aim to develop a research base based on materials, microorganisms, and electrochemistry, to develop technologies that can be used by engineers in the field, and to cultivate leade

Journal Articles

Direct ${it in-situ}$ temperature measurement for lamp-based heating device

Sumita, Takehiro; Sudo, Ayako; Takano, Masahide; Ikeda, Atsushi

Science and Technology of Advanced Materials; Methods (Internet), 2(1), p.50 - 54, 2022/02

JAEA Reports

Establishing a new evaluation system to characterize radiation carcinogenesis by stem cell dynamics (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institutes for Quantum Science and Technology*

JAEA-Review 2021-052, 52 Pages, 2022/01

JAEA-Review-2021-052.pdf:2.63MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Establishing a new evaluation system to characterize radiation carcinogenesis by stem cell dynamics" conducted in FY2020. In this study, the long-term clonal expansion of mammary stem cells after high- to low-dose radiation exposure was investigated using stem-cell lineage tracing technology that can permanently label stem cells and their progenies. The purpose of this study is to characterize radiation-induced breast cancer based on the dynamics of radiation-exposed stem cells by capturing proliferation and analyzing it using a mathematical model. We used a mouse model that can trace the cell lineage of basal cells of mammary gland. In this mouse, expansion of clones expressing fluorescent protein was observed over

JAEA Reports

Study of corrosion and degradation of the objects in the nuclear reactor by microorganisms (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Keio University*

JAEA-Review 2021-048, 181 Pages, 2022/01

JAEA-Review-2021-048.pdf:14.5MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study of corrosion and degradation of the objects in the nuclear reactor by microorganisms" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The purpose of the study is to obtain knowledge related to microorganisms that will be useful in the decommissioning process of 1F. Therefore, we clarified the current conditions of the microbial community inhabiting the power plant and its premises. Environmental samples were taken from several sites such as, topsoil from the south of the plant site boundary (south of the treated water tanks), seabed soil and its above water near the plant, surface water 3km offshore, and metagenomic

Journal Articles

Improvement of analysis results from the GAGG scintillator Compton camera operated on an unmanned helicopter by selecting stable flight conditions

Shikaze, Yoshiaki; Shimazoe, Kenji*

Journal of Nuclear Science and Technology, 59(1), p.44 - 54, 2022/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A Compton camera system for use on an unmanned helicopter was previously developed for characterizing the distribution of radioactive materials in highly contaminated areas. For this study, a small camera, a laser distance meter, an attitude angles sensor, temperature sensors, and real-time monitoring software were equipped to the Compton camera system to better measure flight parameters and to more precisely detect hot spot locations. To confirm if detection results were improved by the modifications, measurements were taken from hovering and programmed flights over a field in Okuma, Fukushima Prefecture (Japan). Ambient dose equivalent rate distributions at ground level were obtained by processing the flight data, then compared against measurements taken at ground level on foot using a survey meter. For one hovering flight, the correlation between the datasets was improved by selecting a period of stable flight position and attitude, and by restricting the deviation of the attitude angles. Between 6.0%-7.6% improvement in the position resolution was achieved by using the data from stable flight periods, even when using 1 minute data windows. The precision of hot spot detections and ambient dose equivalent rate distributions obtained from the Compton camera were thus improved by the aforementioned modifications to the system.

Journal Articles

Study on sodium-water reaction jet evaluation model based on engineering approaches with particle method

Kosaka, Wataru; Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Jang, S.*

Nihon Kikai Gakkai Rombunshu (Internet), 88(905), p.21-00310_1 - 21-00310_9, 2022/01

If a pressurized water/water-vapor leaks from a heat transfer tube in a steam generator (SG) in a sodium-cooled fast reactor (SFR), sodium-water reaction forms high-velocity, high-temperature, and corrosive jet. It would damage the other tubes and might propagate the tube failure in the SG. Thus, it is important to evaluate the effect of the tube failure propagation for safety assessment of SFR. The computational code LEAP-III can evaluate water leak rate during the tube failure propagation with short calculation time, since it consists of empirical formulae and one-dimensional equations of conservation. One of the empirical models, temperature distribution evaluation model, evaluates the temperature distribution in SG as circular arc isolines determined by experiments and preliminary analyses instead of complicated real distribution. In order to improve this model to get more realistic temperature distribution, we have developed the Lagrangian particle method based on engineering approaches. In this study, we have focused on evaluating gas flow in a tube bundle system, and constructed new models for the gas-particles behavior around a tube to evaluate void fraction distribution near the tube. Through the test analysis simulating one target tube system, we confirmed the capability of the models and next topic to improve the models.

Journal Articles

Experiments of melt jet-breakup for agglomerated debris formation using a metallic melt

Iwasawa, Yuzuru; Sugiyama, Tomoyuki; Abe, Yutaka*

Nuclear Engineering and Design, 386, p.111575_1 - 111575_17, 2022/01

Journal Articles

Fe, Mn and $$^{238}$$U accumulations in ${it Phragmites australis}$ naturally growing at the mill tailings pond; Iron plaque formation possibly related to root-endophytic bacteria producing siderophores

Nakamoto, Yukihiro*; Doyama, Kohei*; Haruma, Toshikatsu*; Lu, X.*; Tanaka, Kazuya; Kozai, Naofumi; Fukuyama, Kenjin; Fukushima, Shigeru; Ohara, Yoshiyuki; Yamaji, Keiko*

Minerals (Internet), 11(12), p.1337_1 - 1337_17, 2021/12

Mine drainage is a vital water problem in the mining industry worldwide because of the heavy metal elements and low pH. Rhizofiltration using wetland plants is an appropriate method to remove heavy metals from the water via accumulation in the rhizosphere. ${it Phragmites australis}$ is one of the candidate plants for this method because of metal accumulation, forming iron plaque around the roots. At the study site, which was the mill tailings pond in the Ningyo-toge uranium mine, ${it P. australis}$ has been naturally growing since 1998. The results showed that ${it P. australis}$ accumulated Fe, Mn, and $$^{238}$$U in the nodal roots without/with iron plaque compared with other plant tissues. Among the 837 bacterial colonies isolated from nodal roots, 88.6% showed siderophore production activities. Considering iron plaque formation around ${it P. australis}$ roots, we hypothesized that microbial siderophores might influence iron plaque formation because bacterial siderophores have catechol-like functional groups. The complex of catechol or other phenolics with Fe was precipitated due to the networks between Fe and phenolic derivatives. The experiment using bacterial products of root endophytes, such as ${it Pseudomonas}$ spp. and ${it Rhizobium}$ spp., showed precipitation with Fe ions, and we confirmed that several ${it Ps.}$ spp. and ${it R.}$ spp. produced unidentified phenolic compounds. In conclusion, root-endophytic bacteria such as ${it Pseudomonas}$ spp. and ${it R.}$ spp., isolated from metal-accumulating roots of ${it P. australis}$, might influence iron plaque formation as the metal accumulation site. Iron plaque formation is related to tolerance in ${it P. australis}$, and ${it Ps.}$ spp. and ${it R.}$ spp. might indirectly contribute to tolerance.

1908 (Records 1-20 displayed on this page)