Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2024-016, 61 Pages, 2024/12
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of a high-resolution imaging camera for alpha dust and high-dose rate monitor" conducted in FY2022. The present study aims to develop a high-resolution imaging camera for alpha dust and a high-dose rate monitor. To realize the high-resolution imaging camera for alpha dust, we have developed novel scintillation materials with emission bands of 500-800 nm. Moreover, we have prepared several materials for the camera and software. We have also developed novel scintillation materials with emission bands of 650-1,000 nm, and simulation studies have been conducted for the high-dose-rate monitor system consisting of optical fiber.
Takeda, Takeshi
JAEA-Data/Code 2024-014, 76 Pages, 2024/12
An experiment denoted as SB-PV-03 was conducted on November 19, 2002 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-PV-03 simulated a 0.2% pressure vessel bottom small-break loss-of-coolant accident in a pressurized water reactor (PWR). The test assumptions included total failure of high pressure injection system of emergency core cooling system (ECCS) and noncondensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of ECCS. Secondary-side depressurization of both steam generators (SGs) as an accident management (AM) action to achieve the depressurization rate of 55 K/h in the primary system was initiated 10 min after the generation of a safety injection signal, and continued afterwards. Auxiliary feedwater injection into the secondary-side of both SGs was started for 30 min with some delay after the onset of the AM action. The AM action was effective on the primary depressurization until the ACC tanks began to discharge nitrogen gas into the primary system. The core liquid level recovered in oscillative manner because of intermittent coolant injection from the ACC system into both cold legs. Therefore, the core liquid level remained at a small drop. The pressure difference between the primary and SG secondary sides became larger after nitrogen gas ingress. Core uncovery occurred by core boil-off during reflux condensation in the SG U-tubes under nitrogen gas influx. When the maximum cladding surface temperature of simulated fuel rods exceeded the pre-determined value of 908 K, the core power was automatically reduced to protect the LSTF core. After the automatic core power reduction, coolant injection from low pressure injection (LPI) system of ECCS into both cold legs led to the whole core quench. After the continuous core cooling was confirmed through the actuation of the LPI system, the experiment was terminated.
Hanari, Toshihide; Nakamura, Keita*; Imabuchi, Takashi; Kawabata, Kuniaki
Journal of Robotics and Mechatronics, 36(6), p.1537 - 1549, 2024/12
This paper describes three-dimensional (3D) reconstruction processes introducing the image selection method for efficiently generating a 3D model from an image sequence. To obtain suitable images for efficient 3D reconstruction, we tried to apply the image selection method to remove the redundant images in the image sequence. By the proposed method, the suitable images were selected from the image sequence based on optical flow measures and a fixed threshold. As a result, the proposed method can reduce the computational cost for the 3D reconstruction processes based on the image sequence acquired by the camera. We confirmed that the computational cost of the 3D reconstruction processes can reduce while keeping the 3D reconstruction accuracy at a constant level.
Materials Sciences Research Center
JAEA-Review 2024-037, 141 Pages, 2024/11
Fifteen neutron beam experimental instruments managed by JAEA are installed in JRR-3 (Japan Research Reactor No.3) and are available for internal use including upgrading of instruments and for external users to produce various research results. This report summarizes the progress of internal application research and technical development such as upgrading of neutron beam instruments in the fiscal years 2021 and 2022 after the restart of operation.
Collaborative Laboratories for Advanced Decommissioning Science; Tokai National Higher Education and Research System*
JAEA-Review 2024-027, 77 Pages, 2024/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development and evaluation of a real-time 3D positioning embedded system combining wireless UWB and camera image analysis" conducted in FY2022. The present study aims to realize an embedded system that combines two of the latest popular technologies, "wireless UWB (Ultra Width Band)" and "multi-camera object recognition," with the goal of simple realtime 3D positioning with less than 10 cm accuracy by a human or robot for measuring air doses in nuclear reactor buildings.
Hata, Koji*; Niunoya, Sumio*; Aoyagi, Kazuhei
International Journal of the JSRM (Internet), 20(1), p.240104_1 - 240104_4, 2024/11
Japan Atomic Energy Agency has been conducting R&D activities to enhance the reliability of high-level radioactive waste deep geological disposal technology. In this project, one of the challenges is the development of methods for long-term monitoring of rock mass behavior. Therefore, in January 2014, the long-term measurements of the hydro-mechanical behavior of the rock mass were launched using the three types of optical sensors in the vicinity of the shaft excavated deeper than 350 m at the Horonobe Underground Research Center. The measurement results show that Acoustic emission occur frequently up to 1.5 m from the wall during excavation. In addition, hydraulic conductivity increased by 2-4 orders of magnitude. Elastoplastic analysis revealed that the hydraulic behavior of the rock mass affected the pore pressure fluctuations and caused micro-fractures. Based on this, a conceptual model is developed to represent the excavation damaged zone, which contributes to the safe geological disposal of radioactive waste.
Aoyagi, Kazuhei; Ozaki, Yusuke; Tamura, Tomonori; Ishii, Eiichi
Proceedings of 4th International Conference on Coupled Processes in Fractured Geological Media; Observation, Modeling, and Application (CouFrac2024) (Internet), 10 Pages, 2024/11
In high-level radioactive waste disposal, it is crucial to estimate the transmissivity of gallery excavation-induced fractures, i.e., excavation damaged zone (EDZ) fractures, because EDZ fractures can be a radionuclide migration pathway after the backfilling of the facility is completed. From previous research, the transmissivity of the fracture can be estimated through the empirical equation using the parameter ductility index (DI), which corresponds to the effective mean stress normalized to the tensile strength of the rock. In this research, we performed a hydromechanical coupling analysis of a gallery excavation at the Horonobe Underground Research Laboratory to estimate the transmissivity of the EDZ fracture before the excavation. At first, we simulated the gallery excavation at 350 m and showed that the measured transmissivity was within the range of the estimated transmissivity using the DI. After that, we also predicted the excavation of a gallery at 500 m by setting the hydromechanical parameters acquired from the laboratory tests before the excavation. The estimated transmissivity at 500 m was one order of magnitude less than that at 350 m. This result might be related to the closure of the fracture under high-stress conditions and low rock strength.
Sato, Yuki
Applied Radiation and Isotopes, 212, p.111421_1 - 111421_8, 2024/10
Times Cited Count:0 Percentile:0.00(Chemistry, Inorganic & Nuclear)Vauchy, R.; Hirooka, Shun; Horii, Yuta; Ogasawara, Masahiro*; Sunaoshi, Takeo*; Yamada, Tadahisa*; Tamura, Tetsuya*; Murakami, Tatsutoshi
Journal of Nuclear Materials, 599, p.155233_1 - 155233_11, 2024/10
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)The fluorite exsolution/recombination in UPuO (y = 0.30 and 0.45) and PuO was investigated using differential scanning calorimetry. The results are in relatively good agreement with the literature data, except for plutonia. Our values indicate that the critical temperature of the miscibility gap in Pu-O is 3050 K lower than previously reported. Finally, the systematic experimental procedure allowed us refining the locus of the solvus existing in hypostoichiometric U0PuO, UPuO, and PuO dioxides.
Ishikawa, Akihisa; Tanaka, Hiroki*; Nakamura, Satoshi*; Kumada, Hiroaki*; Sakurai, Yoshinori*; Watanabe, Kenichi*; Yoshihashi, Sachiko*; Tanagami, Yuki*; Uritani, Akira*; Kiyanagi, Yoshiaki*
Journal of Radiation Research (Internet), 11 Pages, 2024/10
Times Cited Count:0 Percentile:0.00(Biology)Zhang, Y.-J.*; Umeda, Takemasa*; Morooka, Satoshi; Harjo, S.; Miyamoto, Goro*; Furuhara, Tadashi*
Metallurgical and Materials Transactions A, 55(10), p.3921 - 3936, 2024/10
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Idomura, Yasuhiro
Physics of Plasmas, 31(10), p.102504_1 - 102504_10, 2024/10
Times Cited Count:0 Percentile:0.00(Physics, Fluids & Plasmas)Hydrogen isotope mixing phenomena in tokamak plasmas are analyzed using global full-f gyrokinetic simulations. Model plasma parameters are chosen based on the hydrogen isotope pellet experiments on JET, in which hydrogen isotope mixing in the time scale of the energy confinement time occurred after injecting deuterium (D) pellets into hydrogen (H) plasmas. Two numerical experiments are conducted using plasma profiles before and after the D pellet injection. In both cases, turbulent fluctuations in the plasma core are characterized by ion temperature gradient driven turbulence, while in the latter case, trapped electron mode turbulence also exists in the outer region. In the former case, the density profile of bulk H ions is kept in a quasi-steady state, and the particle confinement time of bulk H ions is an order of magnitude longer than the energy confinement time. In the latter case, the density profiles of bulk H ions and pellet D ions show transient relaxation in the time scale of the energy confinement time, indicating the fast hydrogen isotope mixing. In the toroidal angular momentum balance, it is found that the hydrogen isotope mixing is driven by the toroidal field stress.
Bachmann, A. M.*; Richards, S.*; Feng, B.*; Nishihara, Kenji; Abe, Takumi
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
This work demonstrates the value of code verification as an initial step in utilizing fuel cycle simulation. Cyclus and NMB are open-source fuel cycle simulators that provide computational modeling of nuclear fuel cycle alternatives and were chosen by Argonne National Laboratory and Japan Atomic Energy Agency (JAEA), respectively, for a multi-year collaboration on fuel cycle benchmarks. Both are relatively new and can be improved after conducting a rigorous code-to-code comparison. Initial verification of these simulators was performed using a set of hypothetical scenarios for once-through and multi-recycle fuel cycles. The results of this work identify how differences in scenario definitions and the modeling methodologies of the two simulators lead to differences in results in material inventories, mass flows, and other important metrics for fuel cycle assessments.
Nishihara, Kenji; Sugawara, Takanori; Fukushima, Masahiro; Iwamoto, Hiroki; Katano, Ryota; Abe, Takumi
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
A pilot plant for the accelerator-driven system is proposed as a scaled-down version of a lead-bismuth cooled ADS with 800 MW thermal output for transmutation of minor actinides. In this presentation, the design policy of the pilot plant is presented.
Kai, Takeshi; Toigawa, Tomohiro; Matsuya, Yusuke*; Hirata, Yuho; Tezuka, Tomoya*; Tsuchida, Hidetsugu*; Yokoya, Akinari*
Scientific Reports (Internet), 14, p.24722_1 - 24722_15, 2024/10
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)Scientific insight of water radiolysis is essential to estimate the direct and indirect effects of radiation DNA damage. Secondary electrons produced by water radiolysis are responsible for both effects. Here, we use a first-principles code to calculate the femtosecond dynamics of secondary electrons produced as a result of 20-30 eV energy deposition to water and analyze the formation mechanism of radiolytic chemical species produced in a nano-size ultra-small space region. From the results, it was clarified that the chemical species produced by water radiolysis begin to densify in the ultra-small region of a few nanometers when the deposition energy exceeds 25 eV. Our results provide important scientific insights into the formation of clustered DNA damage, which is believed to cause biological effects such as cell death.
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-022, 59 Pages, 2024/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Investigation of effects of nano interfacial phenomena on dissolution aggregation of alpha nanoparticles by using micro nano technologies" conducted in FY2022. To ensure the safety of retrieval and storage management of nuclear fuel debris generated by the Fukushima Daiichi Nuclear Power Station accident, understanding of dissolution-denaturation behavior of the fuel debris alpha particles is one of the most crucial issues. This research aims to create novel microfluidic real-time measurement device for elucidating dissolution, aggregation, and denaturation processes of metal oxide nanoparticles under various solution environments, and clarify their nano-size and interfacial effects.
Collaborative Laboratories for Advanced Decommissioning Science; Kogakuin University*
JAEA-Review 2024-015, 99 Pages, 2024/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Establishment of characterization method for small fuel debris using the world's first isotope micro imaging apparatus" conducted in FY2022. The present study aims to obtain, for the first time in the world, the important data necessary for clarifying the retrieval of small amounts of fuel debris, and to evaluate and examine them. SEM-EDS and TEM-EDS cannot be used for isotopic identification and analysis of Pu and B. On the other hand, bulk analysis such as ICP-MS lacks the information in a micro region.
Ding, H.*; Ito, Keita*; Endo, Yasushi*; Takanashi, Koki; Seki, Takeshi*
Journal of Physics D; Applied Physics, 57(38), p.385002_1 - 385002_10, 2024/09
Times Cited Count:0 Percentile:0.00(Physics, Applied)Zhu, L.*; He, H.*; Naeem, M.*; Sun, X.*; Qi, J.*; Liu, P.*; Harjo, S.; Nakajima, Kenji; Li, B.*; Wang, X.-L.*
Physical Review Letters, 133(12), p.126701_1 - 126701_6, 2024/09
Valika, M.*; Haidamak, T.*; Cabala, A.*; Pospil, J.*; Bastien, G.*; Sechovsk, V.*; Prokleka, J.*; Yanagisawa, Tatsuya*; Opletal, P.; Sakai, Hironori; et al.
Physical Review Materials (Internet), 8(9), p.094415_1 - 094415_9, 2024/09
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)