Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 85

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Application of analytical wall functions to CFD analysis of condensation flow

Soma, Shu; Ishigaki, Masahiro*; Abe, Satoshi; Shibamoto, Yasuteru

Nuclear Engineering and Design, 416, p.112754_1 - 112754_18, 2024/01

Journal Articles

The Development of a Multiphysics Coupled Solver for Studying the Effect of Dynamic Heterogeneous Configuration on Particulate Debris Bed Criticality and Cooling Characteristics

Li, C.-Y.; Wang, K.*; Uchibori, Akihiro; Okano, Yasushi; Pellegrini, M.*; Erkan, N.*; Takata, Takashi*; Okamoto, Koji*

Applied Sciences (Internet), 13(13), p.7705_1 - 7705_29, 2023/07

 Times Cited Count:0 Percentile:0

Journal Articles

Experiment and numerical simulation of pulsation flow in single channel for Li-7 enrichment technology development by MCCCE method

Horiguchi, Naoki; Yoshida, Hiroyuki; Kitatsuji, Yoshihiro; Hasegawa, Makoto*; Kishimoto, Tadafumi*

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

From the viewpoint of energy security in Japan and reduction of the environmental load, continuous operation of light water reactors is essential. Since a pH adjuster with enriched Li-7 ions is required for water quality control on PWR, the development of Li-7 enrichment technology is one of the key issues. The multi-channel counter-current electrophoresis (MCCCE) method has been developed as the technology with a low environmental load. To put this method into practical use, it is necessary to understand Li-7 ion behavior in the channel flow and optimize the experimental condition to separate Li-7 and its isotope. In this paper, to understand Li-7 ion behavior in a single channel of the experimental apparatus, a numerical simulation method based on a computational fluid dynamics (CFD) code with a particle tracking method, TPFIT-LPT, was developed. In the method, the motion of multiple ions under the electric field was simulated as a particle with an added velocity by the electric field. The difference in the isotopes was represented by changing of the magnitude of the added velocity. We also considered that although it is impossible to measure the behavior of each ion, it is important to measure the flow velocity of the bulk fluid for the validation of the numerical simulation. We developed a lab-scale experimental apparatus in which the single channel of the actual apparatus was simplified to measure the flow velocity by Particle Image Velocimetry (PIV). We set a pulsation flow condition on the lab-scale experiment, which is one of difficult conditions for the numerical simulation, and measured the velocity. As the result, we confirmed that the pulsation flow was reproduced. We set the measured data as the inlet boundary condition of the numerical simulation and conducted it. As the numerical result, we confirmed the ions affected by the electric field moved upstream with pulsation. We also confirmed the effect of the electric field on the motion of the isotope.

Journal Articles

Large-eddy simulation on two-liquid mixing in the horizontal leg and downcomer (the TAMU-CFD Benchmark), with respect to fluctuation behavior of liquid concentration

Abe, Satoshi; Okagaki, Yuria

Nuclear Engineering and Design, 404, p.112165_1 - 112165_14, 2023/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Effects of vent size and wind on dispersion of hydrogen leaked in a partially open space; Studies by numerical analysis

Terada, Atsuhiko; Nagaishi, Ryuji

Nuclear Science and Engineering, 197(4), p.647 - 659, 2023/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In order to understand dispersion of hydrogen leaked in a partially open space practically, which can be considered as a basic model for all processes of transfer, treatment, storage and disposal of radioactive materials containing fuel debris in the decommissioning of nuclear facilities after a severe accident, by using a CFD code, the effects of vent size and outer wind on the H$$_{2}$$ dispersion were analytically studied by adopting the experimental Hallway model, which has H$$_{2}$$ release hole on the ceiling, one vent on the Roof vent and Door vent. Air flowed in the model from the Door vent, while H$$_{2}$$ was discharged outside from the Roof vent. The discharged amount of H$$_{2}$$ increased in conjunction with the air inflow when the size of Roof and or Door vents was increased. The effect of wind depended on the direction to the Door vent: wind from the same direction as the Door vent promoted the H$$_{2}$$ discharge, while wind from the opposite direction suppressed. The dispersion characteristics of indoor leaked H$$_{2}$$ was clarified for comparing model tests with the same Froude number and different scales. It was found from the analysis results of comparing model tests with the same Froude number and different scales that when the H$$_{2}$$ leaked into the room and diffused to the air, the flow generated by the buoyancy of mixed gas created the stack effect which caused the natural ventilation by drawing in the air from the outside through vent. In addition, it was speculated that the H$$_{2}$$ concentration decreased after its leak by quickly mixing with the air which flowed in from the vents and reached to the floor due to the Coanda effect, which is the effect of the free jet being drawn to a nearby wall.

JAEA Reports

Research on radioactive aerosol control and decontamination at Fukushima Daiichi Nuclear Power Station decommissioning (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-061, 59 Pages, 2023/02

JAEA-Review-2022-061.pdf:2.38MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Research on radioactive aerosol control and decontamination at Fukushima Daiichi Nuclear Power Station decommissioning" conducted in FY2021. The present study aims to develop a safe laser decontamination system that simultaneously incorporates an advanced particle detection and characterization system together with aerosol dispersion control in collaboration with the UK researchers. By using the UK partner's fundamental studies related to aerosol and water interface interactions, various methods such as electro-chemical processing of water-mist particles and spray droplets will be applied for effective control of ultra-fine aerosol particle dispersions in a large containment volume.

JAEA Reports

Experimental and numerical study on energy separation in vortex tube with a hollow helical fin (Joint research)

Kureta, Masatoshi; Yamagata, Yoji*; Miyakoshi, Ken*; Mashii, Tatsuya*; Miura, Yoshiaki*; Takahashi, Kazunori*

JAEA-Research 2022-007, 28 Pages, 2022/09

JAEA-Research-2022-007.pdf:8.17MB

To enhance energy separation in a counter-current Ranque-Hilsch vortex tube, a newly designed hollow helical fin was inserted into the hot tube of the vortex tube. In this study, the effect of the fin on the energy separation was investigated using three types of the vortex tube, and then computational fluid dynamics (CFD) simulation has been conducted to understand the experimental results and discuss the flow structure in the vortex tube with the hollow helical fin. As a result, it was found from the experimental data that the fin effectively enhanced energy separation, and that the tube length could be shorten. When the inlet air pressure was 0.5 MPa, the maximum temperature difference from the inlet to the cold exit was 62.2$$^{circ}$$C. The CFD code employing the Reynolds Stress Model (RSM) turbulence model was used to analyze the fluid dynamics in the vortex tube. As a result, it was confirmed that the temperature, velocity, and pressure distributions changed significantly at the stagnation point, and that the distributions in the tube with the fin were completely different from those without the fin. It was thought that a strong reversing helical vortex flow with small recirculating vortex structure formed between the fin end and the stagnation point on the cold exit side would enhance energy separation in the vortex tube with the hollow helical fin.

Journal Articles

Development of ARKADIA-Design for design optimization support; Application of coupling method using multi-level simulation technique for plant thermal-hydraulics analysis

Doda, Norihiro; Yoshimura, Kazuo; Hamase, Erina; Yokoyama, Kenji; Uwaba, Tomoyuki; Tanaka, Masaaki

Proceedings of Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors (Internet), 3 Pages, 2022/09

ARKADIA-Design is being developed to support the optimization of sodium-cooled fast reactors in the conceptual design stage. Design optimization requires various types of numerical analysis: 1-D plant dynamics analysis for efficient evaluation of various design options and multi-dimensional analysis for a detailed evaluation of local phenomena, including multi-physics. For those analyses, ARKADIA-Design performs whole plant analyses based on the multi-level simulation (MLS) technique in which the analysis codes are coupled to simulate the phenomena in an intended degree of resolution. This paper describes an outline of the coupling analysis methods in the MLS of the ARKADIA-Design and the numerical simulations of the experimental fast breeder reactor EBR-II tests by the coupled analysis.

Journal Articles

Application of 1D-CFD coupling method to unprotected loss of heat sink event in EBR-II focusing on thermal stratification in cold pool

Yoshimura, Kazuo; Doda, Norihiro; Fujisaki, Tatsuya*; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 10 Pages, 2022/08

To confirm the applicability of the reactivity model, the authors have been conducting the benchmark exercises of the unprotected loss of heat sink event tests in a pool-type experimental fast reactor EBR-II. In the blind phase in the benchmark analyses using the plant dynamics analysis (1D) code in which the cold pool was modeled by means of the perfect mixing volume, it was found the increase of the core inlet temperature was evaluated lower than that of the measured data and the feedback reactivity was underestimated, because the thermal stratification in the cold pool was ignored. Then, the detailed model of the cold pool for the computational fluid dynamics (CFD) code was introduced and the 1D-CFD codes coupling method was applied to the benchmark analyses. It was confirmed that both the thermal stratification in the cold pool and the increase of the core inlet temperature were successfully reproduced.

Journal Articles

Simulation of the self-propagating hydrogen-air premixed flame in a closed-vessel by an open-source CFD code

Thwe Thwe, A.; Terada, Atsuhiko; Hino, Ryutaro; Nagaishi, Ryuji; Kadowaki, Satoshi

Journal of Nuclear Science and Technology, 59(5), p.573 - 579, 2022/05

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The simulations of the combustion of self-propagating hydrogen-air premixed flame are performed by an open-source CFD code. The flame propagation behavior, flame radius, temperature and pressure are analyzed by varying the initial laminar flame speed and grid size. When the initial laminar speed increases, the thermal expansion effects become strong which leads the increase of flame radius along with the increase of flame surface area, flame temperature and pressure. A new laminar flame speed model derived previously from the results of experiment is also introduced to the code and the obtained flame radii are compared with those from the experiments. The formation of cellular flame fronts is captured by simulation and the cell separation on the flame surface vividly appears when the gird resolution becomes sufficiently higher. The propagation behavior of cellular flame front and the flame radius obtained from the simulations have the reasonable agreement with the previous experiments.

Journal Articles

A Comparative CFD exercise on bubble hydrodynamics using Euler-Euler and interface tracking approaches

Dehbi, A.*; Cheng, X.*; Liao, Y.*; Okagaki, Yuria; Pellegrini, M.*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 15 Pages, 2022/03

Journal Articles

CFD analysis of natural circulation in LBE-cooled accelerator-driven system

Sugawara, Takanori; Watanabe, Nao; Ono, Ayako; Nishihara, Kenji; Ichihara, Kyoko*; Hanzawa, Kohei*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 10 Pages, 2022/03

Japan Atomic Energy Agency (JAEA) has investigated an accelerator-driven system (ADS) to transmute minor actinides (MAs) included in high level wastes discharged from nuclear power plants. The ADS is a lead-bismuth cooled tank-type reactor with 800 MW thermal power. It is supposed that the ADS is safer than conventional critical reactors because it is operated in a subcritical state. The previous study performed the transient analyses for the typical ADS accidents such as unprotected loss of flow or beam overpower. It was shown that all calculation cases except loss of heat sink (LOHS) satisfied the no-damage criteria. To avoid the damage by LOHS, the ADS equips Direct Reactor Auxiliary Cooling System (DRACS) to remove the decay heat. The most important points of a DRACS operation are its reliability and to ensure the flowrate in a natural circulation state. This study aims to perform the CFD analysis of the natural circulation to clarify the flowrate in the ADS reactor vessel.

Journal Articles

Toward mechanistic evaluation of critical heat flux in nuclear reactors, 2; Recent studies and future challenges toward mechanistic and reliable CHF evaluation

Okawa, Tomio*; Mori, Shoji*; Liu, W.*; Ose, Yasuo*; Yoshida, Hiroyuki; Ono, Ayako

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(12), p.820 - 824, 2021/12

The evaluation method of the critical heat flux based on the mechanism is needed for the efficient design and development of fuel in reactors and the appropriate safety evaluation. In this paper, the current researches relating to the mechanism of the critical heat flux are reviewed, and the issue to be considered in the future are discussed.

Journal Articles

Iterative methods with mixed-precision preconditioning for ill-conditioned linear systems in multiphase CFD simulations

Ina, Takuya*; Idomura, Yasuhiro; Imamura, Toshiyuki*; Yamashita, Susumu; Onodera, Naoyuki

Proceedings of 12th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems ScalA21) (Internet), 8 Pages, 2021/11

 Times Cited Count:0 Percentile:53.11

A new mixed-precision preconditioner based on the iterative refinement (IR) method is developed for preconditioned conjugate gradient (P-CG) and multigrid preconditioned conjugate gradient (MGCG) solvers in a multi-phase thermal-hydraulic CFD code JUPITER. In the IR preconditioner, all data is stored in FP16 to reduce memory access, while all computation is performed in FP32. The hybrid FP16/32 implementation keeps the similar convergence property as FP32, while the computational performance is close to FP16. The developed solvers are optimized on Fugaku (A64FX), and applied to ill-conditioned matrices in JUPITER. The P-CG and MGCG solvers with the new IR preconditioner show excellent strong scaling up to 8,000 nodes, and at 8,000 nodes, they are respectively accelerated up to 4.86$$times$$ and 2.39$$times$$ from the conventional ones on Oakforest-PACS (KNL).

JAEA Reports

Re-examinations of MA fuel composition for accelerator-driven system and its heat removal

Sugawara, Takanori; Moriguchi, Daisuke*; Ban, Yasutoshi; Tsubata, Yasuhiro; Takano, Masahide; Nishihara, Kenji

JAEA-Research 2021-008, 63 Pages, 2021/10

JAEA-Research-2021-008.pdf:4.43MB

This study aims to perform the neutronics calculations for accelerator-driven system (ADS) with a new fuel composition based on the SELECT process developed by Japan Atomic Energy Agency because the previous studies had used the ideal MA (minor actinide) fuel composition without uranium and rare earth elements. Through the neutronics calculations, it is shown that two calculation cases, with/without neptunium, satisfy the design criteria. Although the new fuel composition includes uranium and rare earth elements, the ADS core with the new fuel composition is feasible and consistent with the partitioning and transmutation (P&T) cycle. Based on the new fuel composition, the heat removal during fuel powder storage and fuel assembly assembling is evaluated. For the fuel powder storage, it is found that a cylindrical tube container with a length of 500 [mm] and a diameter of 11 - 21 [mm] should be stored under water. For the fuel assembly assembling, CFD analysis indicates that the cladding tube temperature would satisfy the criterion if the inlet velocity of air is larger than 0.5 [m/s]. Through these studies, the new fuel composition which is consistent with the P&T cycle is obtained and the heat removal with the latest conditions is investigated. It is also shown that the new fuel composition can be practically handled with respect to heat generation, which is one of the most difficult points in handling MA fuel.

Journal Articles

A Numerical investigation on the heat transfer and turbulence production characteristics induced by a swirl spacer in a single-tube geometry under single-phase flow condition

Abe, Satoshi; Okagaki, Yuria; Satou, Akira; Shibamoto, Yasuteru

Annals of Nuclear Energy, 159, p.108321_1 - 108321_12, 2021/09

 Times Cited Count:3 Percentile:49.33(Nuclear Science & Technology)

Journal Articles

Numerical investigations on the coolability and the re-criticality of a debris bed with the density-stratified configuration

Li, C.-Y.; Uchibori, Akihiro; Takata, Takashi; Pellegrini, M.*; Erkan, N.*; Okamoto, Koji*

Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2021/07

The capability of stable cooling and avoiding re-criticality on the debris bed are the main issues for achieving IVR (In-Vessel Retention). In the actual situation, the debris bed is composed of mixed-density debris particles. Hence, when these mixed-density debris particles were launched to re-distribute, the debris bed would possibly form a density-stratified distribution. For the proper evaluation of this scenario, the multi-physics model of CFD-DEM-Monte-Carlo based neutronics is established to investigate the coolability and re-criticality on the heterogeneous density-stratified debris bed with considering the particle relocation. The CFD-DEM model has been verified by utilizing water injection experiments on the mixed-density particle bed in the first portion of this research. In the second portion, the coupled system of the CFD-DEM-Monte-Carlo based neutronics model is applied to reactor cases. Afterward, the debris particles' movement, debris particles' and coolant's temperature, and the k-eff eigenvalue are successfully tracked. Ultimately, the relocation and stratification effects on debris bed's coolability and re-criticality had been quantitatively confirmed.

Journal Articles

Numerical study on an interface compression method for the volume of fluid approach

Okagaki, Yuria; Yonomoto, Taisuke; Ishigaki, Masahiro; Hirose, Yoshiyasu

Fluids (Internet), 6(2), p.80_1 - 80_17, 2021/02

Journal Articles

LES-WALE simulation on two liquid mixing in the horizontal legs and downcomer; The Open-test condition in the TAMU-CFD benchmark (IBE-5)

Abe, Satoshi; Okagaki, Yuria; Ishigaki, Masahiro; Shibamoto, Yasuteru

Proceedings of OECD/NEA Workshop on Virtual CFD4NRS-8; Computational Fluid Dynamics for Nuclear Reactor Safety (Internet), 11 Pages, 2020/11

Journal Articles

The Working group on the analysis and management of accidents (WGAMA); A Historical review of major contributions

Herranz, L. E.*; Jacquemain, D.*; Nitheanandan, T.*; Sandberg, N.*; Barr$'e$, F.*; Bechta, S.*; Choi, K.-Y.*; D'Auria, F.*; Lee, R.*; Nakamura, Hideo

Progress in Nuclear Energy, 127, p.103432_1 - 103432_14, 2020/09

 Times Cited Count:2 Percentile:11.59(Nuclear Science & Technology)

85 (Records 1-20 displayed on this page)