Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Li, X.; Yamaji, Akifumi*; Sato, Ikken*; Yamashita, Takuya
Annals of Nuclear Energy, 214, p.111217_1 - 111217_13, 2025/05
Times Cited Count:0Aoyama, Takahito; Ueno, Fumiyoshi; Sato, Tomonori; Kato, Chiaki; Sano, Naruto; Yamashita, Naoki; Otani, Kyohei; Igarashi, Takahiro
Annals of Nuclear Energy, 214, p.111229_1 - 111229_6, 2025/05
Times Cited Count:0Wada, Yuki; Shibamoto, Yasuteru; Hibiki, Takashi*
International Journal of Heat and Mass Transfer, 239, p.126598_1 - 126598_18, 2025/04
Times Cited Count:0 Percentile:0.00(Thermodynamics)Asahi, Yoshimitsu; Fukuda, Shigeki; Shiramizu, Daiki; Miyata, Koshi; Tone, Masaya; Katsuoka, Nanako; Maeda, Yuta; Aoyama, Yusuke; Niitsuma, Koichi; Kobayashi, Hidekazu; et al.
JAEA-Technology 2024-024, 271 Pages, 2025/03
A glass melter for the vitrification process of highly active liquid waste in the Tokai Reprocessing Plant, TVF's 3rd melter, was built, and the glass of 18 vitrified waste canisters in weight was melted and poured through a cold test operation. The molten glass surface was covered by a cold cap from feeding fiberglass cartridges saturated with non-radioactive simulant liquid waste as raw material, whose components are equivalent to actual waste. Differences in inherent characteristics of the thermal behavior between the 2nd and the 3rd melter due to the difference in design were considered to establish the procedure to control the new melter. The melter's condition was stabilized at a higher glass temperature and the cooling of 1 kW less in each of the two main electrodes, compared to the 2nd one. Under 39 kW joule heating of the main electrodes with 26 Nm3/h coolant flow rate, it showed the capability to finish heating the bottom furnace in 5 hours before pouring, 2 hours shorter than the 2nd melter. Measurements of the temperature distributions in molten glass and casing surface yielded data that is efficient for developing a simulation model. After Platinum Group Elements (PGE) concentration saturates in the molten glass, feeding raw material and discharging glass were suspended to examine a holding state, indicating PGE settling could retard. During the holding test, observation of the melting process of the cold cap declared that the surface was covered by a thin layer with almost non-fluidity. It will be a reason for choosing the no-slip condition of a fluid calculation, even in the hot-top condition. The investigation of PGE discharging behavior by analyzing the elemental composition of poured glass showed the accumulated PGE amount in the 3rd melter is small compared to the 2nd melter. Inspection of the melter inside after draining out concluded that there were neither significant residual glass nor refractory fragments.
Group for Fukushima Mapping Project
JAEA-Technology 2024-017, 208 Pages, 2025/03
This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2023?. Car-borne surveys, a measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data to create their distribution maps, and temporal changes of the air dose rates were analyzed. Surveys on depth profile of radiocesium and in-situ measurements as for radiocesium deposition were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. Score maps to classify the importance of the measurement points were created, and the temporal changes in the score were analyzed. A system to report the tritium concentration level in seawater to the Nuclear Regulation Authority was operated, and the variation of tritium concentration before and after the discharge of ALPS treated water to the ocean was analyzed. Monitoring data in coastal area performed owing to the comprehensive radiation monitoring plan until FY2023 was analyzed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated air dose rate distribution data acquired through surveys such as car-borne and walk surveys. Representative life patterns that can be expected after the return to the evacuation-designated restricted area were set, and the cumulative exposure doses were evaluated for the local governments and residents in the area. The measurement results for FY2023 were published on the Web site and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.
Taniguchi, Takumi; Matsumoto, Saori; Hiraki, Yoshihisa; Sato, Junya; Fujita, Hideki*; Kaneda, Yoshihisa*; Kuroki, Ryoichiro; Osugi, Takeshi
JAEA-Review 2024-059, 20 Pages, 2025/03
The basic performance required for solidifying waste into cement, such as fluidity before curing and strength after curing, is expected to be affected by the chemical effects of substances and components contained in the waste. The fluidity before curing and the strength properties after curing are greatly influenced by the curing speed of the cement. We investigated existing knowledge with a focus on chemical substances that affect the curing speed of cement. In this report, chemical substances that affect fluidity are broadly classified into inorganic substances such as (1) anion species, (2) metal elements such as heavy metals, (3) inorganic compounds as cement admixtures, and (4) organic compounds as cement admixtures. Based on the investigation, we actually added chemicals and measured the setting time. As a result, it was found that there are multiple mechanisms contributing to accelerated hardening. We investigated chemical substances that inhibit the curing reaction of cement, and were able to compile information to consider ingredients that are contraindicated in cement curing.
Nuclear Backend Technology Development
JAEA-Evaluation 2024-002, 86 Pages, 2025/03
Japan Atomic Energy Agency (hereinafter referred to as "JAEA") consulted the "Evaluation Committee on Research and Development Activities for Decommissioning" (hereinafter referred to as "Committee") about the in-advance evaluation of research themes which had started after FY2021 of R&D plan for the 4th medium- and long-term objectives period concerning "Decommissioning of nuclear facilities and development of technologies for the treatment of related radioactive waste" project in accordance with the "Guideline for evaluation of government R&D activities". In response, the Committee evaluated to the evaluation points of view made by JAEA.
Nagata, Hiroshi; Kochiyama, Mami; Chinone, Marina; Sugaya, Naoto; Nishimura, Arashi; Ishikawa, Joji; Sakai, Akihiro; Ide, Hiroshi
JAEA-Data/Code 2024-016, 44 Pages, 2025/03
The elemental composition of the structural materials of nuclear reactor facilities is used as one of the important parameters in activation calculations that are evaluated when formulating decommissioning plans. Regarding the elemental composition of aluminum alloys and other materials used as structural materials for test and research reactors, sufficient data is not available regarding elements other than the major elements. For this reason, samples were collected from aluminum alloy, beryllium, hafnium, and other materials that have been used as the main structural materials of JMTR (Japan Materials Testing Reactor), and their elemental compositions were analyzed. This report summarizes the elemental composition data of 78 elements obtained in FY2023.
Hayashizaki, Kohei; Hirooka, Shun; Yamada, Tadahisa*; Sunaoshi, Takeo*; Murakami, Tatsutoshi; Saito, Kosuke
Ceramics (Internet), 8(1), p.24_1 - 24_12, 2025/03
Kim, M.*; Lee, C.*; Sugita, Yutaka; Kim, J.-S.*; Jeon, M.-K.*
Geomechanics for Energy and the Environment, 41, p.100628_1 - 100628_9, 2025/03
Times Cited Count:0 Percentile:0.00(Energy & Fuels)This study investigates the impact of primary variables selection on the modeling of non-isothermal two-phase flow, by using the numerical work on the full-scale Engineered Barrier System (EBS) experiment conducted at Horonobe URL as part of the DECOVALEX-2023 project. A validated numerical model is employed to simulate the coupled thermo-hydrological behavior of heterogeneous porous media within the EBS. Two different primary variable schemes are compared in discretizing the governing equations, revealing significant difference in results.
Tanigawa, Masafumi; Seya, Kazuhito*; Asakawa, Naoya*; Hayashi, Hiroyuki*; Horigome, Kazushi; Mukai, Yasunobu; Kitao, Takahiko; Nakamura, Hironobu; Henzlova, D.*; Swinhoe, M. T.*; et al.
JAEA-Technology 2024-014, 63 Pages, 2025/02
The liquid waste treatment process generated sludge items at the plutonium conversion development facility. They are highly heterogeneous and contain large amounts of impurities (Na, Fe, Ni etc.). Therefore, the sludge items have very large sampling uncertainty and so the total measurement uncertainty is very large (approximately 24%). The plutonium scrap multiplicity counter (PSMC) measurement technique for sludge items was developed by joint research between the Japan Atomic Energy Agency (JAEA) and Los Alamos National Laboratory (LANL). The technical validity for sludge items using the PSMC was evaluated using various types of sample measurements and Monte Carlo N-Particle transport code calculations. The PSMC measurement parameters were found to be valid for use with sludge items and the validity of multiplicity analysis was confirmed and demonstrated through comparisons with standard MOX powder and a standard sludge. As a result, the PSMC measurement values were shown to be consistent and reasonable and the large amount of impurity (Fe, Ni etc.) did not impact the results. Therefore, the measurement uncertainty of the improved nuclear material accountancy (NMA) procedure by combined PSMC and high-resolution gamma spectrometry was shown to be 6.5%. In addition, an acceptance test was conducted using PSMC/HRGS and IAEA benchmark equipment. Measured Pu mass by both equipment agrees within the measurement uncertainty of each method, and so the validity for Pu mass measurement by PSMC/HRGS was confirmed. The above results confirm the applicability of PSMC/HRGS as an additional NMA method for sludge and a newly designed NDA procedure based on this study is applied to sludge for NMA in PCDF.
Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Kasahara, Seiji; Okamoto, Koji*
JAEA-Research 2024-012, 98 Pages, 2025/02
Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for the purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO (PuO
-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. In research project of Pu-burner HTGR carried out from fiscal year of 2014 to fiscal year of 2017, simulated CFPs were fabricated using Ce to simulate Pu. Moreover, simulated fuel compacts were fabricated using fabricated simulated CFPs. In this report, results of microstructural observation of CeO
-YSZ and ZrC layer at each fabrication step are reported.
Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Sakai, Takaaki*
Nuclear Engineering and Design, 432, p.113785_1 - 113785_16, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Establishing an evaluation method for the gas entrainment (GE) of argon cover gas due to surface vortices is required in terms of safety design of sodium-cooled fast reactors. To modify the evaluation model in an in-house evaluation tool for GE, StreamViewer, a modified evaluation model on the pressure distribution along the vortex center line (PVL model) was proposed to identify the vortex center lines by connecting continuous vortex center points from the suction port to the surface and evaluate gas core length based on the balance between the hydrostatic pressure and the pressure decrease distribution along the vortex center line. PVL model was applied the three-dimensional numerical analysis results for the experiments where a plate induced unsteady traveling vortices in the open channel flow. Consequently, the GE evaluation using StreamViewer with PVL model could reproduce the relation between the inlet flow velocity and the gas core length in the unsteady vortex flow experiments.
Onishi, Takashi; Koyama, Shinichi*; Yokoyama, Keisuke; Morishita, Kazuki; Watanabe, Masashi; Maeda, Shigetaka; Yano, Yasuhide; Oki, Shigeo
Nuclear Engineering and Design, 432, p.113755_1 - 113755_17, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Yoshida, M.*; McDermott, R. M.*; Angioni, C.*; Camenen, Y.*; Citrin, J.*; Jakubowski, M.*; Hughes, J. W.*; Idomura, Yasuhiro; Mantica, P.*; Mariani, A.*; et al.
Nuclear Fusion, 65(3), p.033001_1 - 033001_132, 2025/02
Times Cited Count:0Progress in physics understanding and theoretical model development of plasma transport and confinement in the ITPA Transport and Confinement Topical Group since the publication of the ITER Physics Basis was summarized focusing on the contributions to ITER and burning plasma prediction and control. This paper provides a general and streamlined overview on the advances that were mainly led by the ITPA TC joint experiments and joint activities for the last 15 years. This paper starts with the scientific strategy and scope of the ITPA TC Topical group and overall picture of the major progress, followed by the progress of each research field: particle transport, impurity transport, ion and electron thermal turbulent transport, momentum transport, impact of 3D magnetic fields on transport, confinement mode transitions, global confinement, and reduced transport modeling.
Motome, Yuiko; Agake, Toshiki; Yanagisawa, Hiroshi
JAEA-Technology 2024-015, 30 Pages, 2025/01
The tables for calibration of control rods were verified, which is used positive period method and improved rod drop method of periodic inspection at Nuclear Safety Research Reactor (NSRR). Those tables are "DOUBLING TIME-REACTIVITY" and "DECAY OF NEUTRON FLUX AFTER INSTANTANEOUS REDUCTION OF REACTIVITY". They are prepared around 1975. Since those tables do not clearly express source of values and records of data used in calculations, the authors verified those tables again. For the verification, the tables were reproduced as follows. For the positive period method, the relationship between the period and reactivity was analytically evaluated by using the inhour equation with NSRR's parameters. For the improved rod drop method, the ratios of neutron flux after the rod drop with parameters of negative reactivities was calculated using the EUREKA- 2 code. As a result, the values described in the tables well agree with those by the present evaluation because it is confirmed that standard deviations of the differences in the value by between the present evaluation and the tables are less than 0.035%. For this reason, it is verified that these tables are valid in the practical use for NSRR operations.
HPC Technology Promotion Office, Center for Computational Science & e-Systems
JAEA-Review 2024-044, 121 Pages, 2025/01
Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. Over the past 10 years or so, the publication of papers utilizing computational science and technology at JAEA has accounted for about 20 percent of the total publications each fiscal year. The supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2023, the system was utilized in R&D activities that were prioritized in the Fourth Medium- to Long-Term Plan, including contributing to carbon neutrality through the development of innovative technologies such as improving safety, creating innovation by promoting diverse R&D related to nuclear science and technology, promoting R&D in response to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station, steadily implementing technological developments for the treatment and disposal of high-level radioactive waste, and supporting nuclear safety regulatory administration and nuclear disaster prevention by promoting safety research for these purposes. This report presents a great number of R&D results accomplished by using the system in FY2023, as well as user support, operational records and overviews of the system, and so on.
Nagaya, Yasunobu
EPJ Nuclear Sciences & Technologies (Internet), 11, p.1_1 - 1_7, 2025/01
Japan Atomic Energy Agency (JAEA) has been developing a general-purpose continuous-energy Monte Carlo code MVP for nuclear reactor core analysis. Recently improvements to MVP have been focused on the development of an advanced neutronics/thermal-hydraulics coupling code. JAEA has also developed a new Monte Carlo solver Solomon for criticality safety analysis. Solomon aims to calculate the criticality of a damaged reactor core including fuel debris. This paper provides an overview of the capabilities and reviews recent applications of MVP and Solomon.
Maeda, Mizuho*; Matsuda, Tatsuma*; Haga, Yoshinori; Shirasaki, Kenji*; Kimura, Noriaki*
Journal of the Physical Society of Japan, 94(2), p.024707_1 - 024707_6, 2025/01
Times Cited Count:0Szab, L.*; Inoue, Mizuki*; Sekine, Yurina; Motokawa, Ryuhei; Matsumoto, Yusuke*; Nge, T. T.*; Ismail, E.*; Ichinose, Izumi*; Yamada, Tatsuhiko*
ChemSusChem, p.e202402034_1 - e202402034_13, 2025/00
Times Cited Count:0Here, we developed a large-pore mesoporous carbon with pore sizes centered around 20-30 nm using a templated technical lignin. During the soft-templating process, unique cylindrical supramolecular assemblies form from the copolymer template, distinct from other systems reported thus far. This peculiar nanostructuring takes place due to the presence of polyethylene glycol (PEG) segments on both the Pluronic template and the PEG- grafted lignin derivative (glycol lignin). A large increase in CO uptake occurs on the resulting large-pore mesoporous carbon at 270 K close to the saturation pressure, owing to capillary condensation.