Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 341

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Conformation, hydration, and ligand exchange process of ruthenium nitrosyl complexes in aqueous solution; Free-energy calculations by a combination of molecular-orbital theories and different solvent models

Kido, Kentaro; Kaneko, Masashi

Journal of Computational Chemistry, 44(4), p.546 - 558, 2023/02

 Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)

Journal Articles

Sensitivity coefficient evaluation of an accelerator-driven system using ROM-Lasso method

Katano, Ryota; Yamamoto, Akio*; Endo, Tomohiro*

Nuclear Science and Engineering, 196(10), p.1194 - 1208, 2022/10

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In this study, we propose the ROM-Lasso method that enables efficient evaluation of sensitivity coefficients of neutronics parameters to cross-sections. In the proposed method, a vector of sensitivity coefficients is expanded by subspace bases, so-called Active Subspace (AS) based on the idea of Reduced Order Modeling (ROM). Then, the expansion coefficients are evaluated by the Lasso linear regression between cross-sections and neutronics parameters obtained by the random sampling. The proposed method can be applied in the case where the adjoint method is difficult to be applied since the proposed method uses only forward calculations. In addition, AS is an effective subspace that can expand the vector of sensitivity coefficients with the lower number of dimension. Thus, the number of unknows is reduced from the original number of input parameters and the calculation cost is dramatically improved compared to the Lasso regression without AS. In this paper, we conducted ADS burnup calculations as a verification. We have shown how AS bases are obtained and the applicability of the proposed method.

Journal Articles

Development of PHITSPlugin for Radiation Behavior Calculation

Suzuki, Kenta; Yashiro, Hiroshi*; Kawabata, Kuniaki

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 4 Pages, 2022/10

JAEA Reports

Calculation of nuclear core parameters for HTTR; Report of summer holiday practical training 2021

Isogawa, Hiroki*; Naoi, Motomasa*; Yamasaki, Seiji*; Ho, H. Q.; Katayama, Kazunari*; Matsuura, Hideaki*; Fujimoto, Nozomu*; Ishitsuka, Etsuo

JAEA-Technology 2022-015, 18 Pages, 2022/07

JAEA-Technology-2022-015.pdf:1.37MB

As a summer holiday practical training 2021, the impact of 10 years long-term shutdown on critical control rod position of the HTTR and the delayed neutron fraction ($$beta$$$$_{rm eff}$$) of the VHTRC-1 core were investigated using Monte-Carlo MVP code. As a result, a long-term shutdown of 10 years caused the critical control rods of the HTTR to withdraw about 4.0$$pm$$0.8 cm compared to 3.9 cm in the experiment. The change in critical control rods position of the HTTR is due to the change of some fission products such as $$^{241}$$Pu, $$^{241}$$Am, $$^{147}$$Pm, $$^{147}$$Sm, $$^{155}$$Gd. Regarding the $$beta$$$$_{rm eff}$$ calculation of the VHTRC-1 core, the $$beta$$$$_{rm eff}$$ value is underestimate of about 10% in comparison with the experiment value.

Journal Articles

Accumulation mechanisms of radiocaesium within lichen thallus tissues determined by means of ${it in situ}$ microscale localisation observation

Dohi, Terumi; Iijima, Kazuki; Machida, Masahiko; Suno, Hiroya*; Omura, Yoshihito*; Fujiwara, Kenso; Kimura, Shigeru*; Kanno, Futoshi*

PLOS ONE (Internet), 17(7), p.e0271035_1 - e0271035_21, 2022/07

 Times Cited Count:0 Percentile:0(Multidisciplinary Sciences)

Journal Articles

Depletion calculation of subcritical system with consideration of spontaneous fission reaction

Riyana, E. S.; Okumura, Keisuke; Sakamoto, Masahiro; Matsumura, Taichi; Terashima, Kenichi

Journal of Nuclear Science and Technology, 59(4), p.424 - 430, 2022/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

radioactivedecay; A Python package for radioactive decay calculations

Malins, A.; Lemoine, T.*

Journal of Open Source Software (Internet), 7(71), p.3318_1 - 3318_6, 2022/03

Journal Articles

Decrease of radionuclide sorption in hydrated cement systems by organic ligands; Comparative evaluation using experimental data and thermodynamic calculations for ISA/EDTA-actinide-cement systems

Ochs, M.*; Dolder, F.*; Tachi, Yukio

Applied Geochemistry, 136, p.105161_1 - 105161_11, 2022/01

 Times Cited Count:3 Percentile:82.21(Geochemistry & Geophysics)

Various types of radioactive wastes and environments contain organic substances that can stabilize the aqueous complexes with radionuclides and therefore lead to a decrease of sorption. The present study focuses on testing a methodology to quantify sorption reduction factors (SRFs) in the presence of organic ligands for cement systems. Three approaches for the estimation of SRFs; (1) analogy with solubility enhancement factors, (2) radionuclide speciation based on the thermodynamic calculations, and (3) experimental sorption data in ternary systems, were coupled and tested for the representative organic ligands (ISA and EDTA) and selected key radionuclides (actinides). Our approach allows to critically evaluate the dependence of SRFs for various systems on the chosen method of quantification, in accordance with the data availability for a given systems. The reliable SRFs can only be derived from the sorption measurements in ternary systems. SRF often need to be derived in the absence of such direct evidence, and estimations need to be made based on analogies and speciation information. However, such estimates may be subject to substantial uncertainties.

Journal Articles

Development of PHITS plugin for calculating the integral radiation dose on robots

Suzuki, Kenta; Kawabata, Kuniaki

New Trends in Intelligent Software Methodologies, Tools and Techniques; Frontiers in Artificial Intelligence and Applications, Vol.355, p.248 - 257, 2022/00

Journal Articles

From recent RPT review articles; Medical application of particle and heavy ion transport code system PHITS

Furuta, Takuya

Igaku Butsuri, 41(4), P. 194, 2021/12

Number of medical uses of Particle and Heavy Ion Transport code System (PHITS) has been increased due to the recent high demands of medical use of radiations. The summary of such research works was described in the review article on medical application of Particle and Heavy Ion Transport code System PHITS published in Radiological Physics and Technology in 2021. There was a request from the editorial board of Japan Society of Medical Physics (JSMP) for writing an introductory article of this article in their internal journal. The research works on medical applications described in the review article, useful functions for medical application in PHITS, and newly opened user forum of PHITS have been introduced.

Journal Articles

A Theoretical investigation on the intermolecular potential curve between ruthenium tetroxide and NO$$_{rm X}$$ (X = 1, 2)

Kido, Kentaro

International Journal of Quantum Chemistry, 121(21), p.e26781_1 - e26781_15, 2021/11

 Times Cited Count:1 Percentile:30.58(Chemistry, Physical)

JAEA Reports

Re-examinations of MA fuel composition for accelerator-driven system and its heat removal

Sugawara, Takanori; Moriguchi, Daisuke*; Ban, Yasutoshi; Tsubata, Yasuhiro; Takano, Masahide; Nishihara, Kenji

JAEA-Research 2021-008, 63 Pages, 2021/10

JAEA-Research-2021-008.pdf:4.43MB

This study aims to perform the neutronics calculations for accelerator-driven system (ADS) with a new fuel composition based on the SELECT process developed by Japan Atomic Energy Agency because the previous studies had used the ideal MA (minor actinide) fuel composition without uranium and rare earth elements. Through the neutronics calculations, it is shown that two calculation cases, with/without neptunium, satisfy the design criteria. Although the new fuel composition includes uranium and rare earth elements, the ADS core with the new fuel composition is feasible and consistent with the partitioning and transmutation (P&T) cycle. Based on the new fuel composition, the heat removal during fuel powder storage and fuel assembly assembling is evaluated. For the fuel powder storage, it is found that a cylindrical tube container with a length of 500 [mm] and a diameter of 11 - 21 [mm] should be stored under water. For the fuel assembly assembling, CFD analysis indicates that the cladding tube temperature would satisfy the criterion if the inlet velocity of air is larger than 0.5 [m/s]. Through these studies, the new fuel composition which is consistent with the P&T cycle is obtained and the heat removal with the latest conditions is investigated. It is also shown that the new fuel composition can be practically handled with respect to heat generation, which is one of the most difficult points in handling MA fuel.

JAEA Reports

Report of summer holiday practical training 2020; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design, 3

Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.

JAEA-Technology 2021-016, 16 Pages, 2021/09

JAEA-Technology-2021-016.pdf:1.8MB

As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (18$$times$$3 layers) fuel blocks with 20% enrichment of $$^{235}$$U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.

JAEA Reports

HTTR burnup characteristic analysis with detailed axial burning region using MVP-BURN

Ikeda, Reiji*; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo; Fujimoto, Nozomu*

JAEA-Technology 2021-015, 32 Pages, 2021/09

JAEA-Technology-2021-015.pdf:2.74MB

Burnup calculation of the HTTR considering temperature distribution and detailed burning regions was carried out using MVP-BURN code. The results show that the difference in k$$_{rm eff}$$, as well as the difference in average density of some main isotopes, is insignificant between the cases of uniform temperature and detailed temperature distribution. However, the difference in local density is noticeable, being 6% and 8% for $$^{235}$$U and $$^{239}$$Pu, respectively, and even 30% for the burnable poison $$^{10}$$B. Regarding the division of burning regions to more detail, the change of k$$_{rm eff}$$ is also small of 0.6%$$Delta$$k/k or less. The small burning region gives a detailed distribution of isotopes such as $$^{235}$$U, $$^{239}$$Pu, and $$^{10}$$B. As a result, the effect of graphite reflector and the burnup behavior could be evaluated more clearly compared with the previous study.

Journal Articles

Medical application of Particle and Heavy Ion Transport code System PHITS

Furuta, Takuya; Sato, Tatsuhiko

Radiological Physics and Technology, 14(3), p.215 - 225, 2021/09

Number of the PHITS users has steadily increased since 2010 from when it is officially counted. Among them, increase of new users in medical physics is outstanding. Many research works in medical physics using PHITS have been published and the applications are widely spread in different fields such as applications to different types of radiotherapy, shielding calculations of medical facilities, application to radiation biology, and research and development of medical tools. In this article, we will introduce useful functions for medical application in PHITS by referring to examples of various medical applications.

JAEA Reports

Mesh effect around burnable poison rod of cell model for HTTR fuel block

Fujimoto, Nozomu*; Fukuda, Kodai*; Honda, Yuki*; Tochio, Daisuke; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo

JAEA-Technology 2021-008, 23 Pages, 2021/06

JAEA-Technology-2021-008.pdf:2.62MB

The effect of mesh division around the burnable poison rod on the burnup calculation of the HTTR core was investigated using the SRAC code system. As a result, the mesh division inside the burnable poison rod does not have a large effect on the burnup calculation, and the effective multiplication factor is closer to the measured value than the conventional calculation by dividing the graphite region around the burnable poison rod into a mesh. It became clear that the mesh division of the graphite region around the burnable poison rod is important for more appropriately evaluating the burnup behavior of the HTTR core..

Journal Articles

Preparation for restarting the high temperature engineering test reactor; Development of utility tool for auto seeking critical control rod position

Ho, H. Q.; Fujimoto, Nozomu*; Hamamoto, Shimpei; Nagasumi, Satoru; Goto, Minoru; Ishitsuka, Etsuo

Nuclear Engineering and Design, 377, p.111161_1 - 111161_9, 2021/06

 Times Cited Count:1 Percentile:30.57(Nuclear Science & Technology)

Journal Articles

Stochastic estimation of radionuclide composition in wastes generated at Fukushima Daiichi Nuclear Power Station using Bayesian inference

Sugiyama, Daisuke*; Nakabayashi, Ryo*; Tanaka, Shingo*; Koma, Yoshikazu; Takahatake, Yoko

Journal of Nuclear Science and Technology, 58(4), p.493 - 506, 2021/04

 Times Cited Count:1 Percentile:30.57(Nuclear Science & Technology)

JAEA Reports

JAEA-TDB-RN in 2020; Update of JAEA's thermodynamic database for solubility and speciation of radionuclides for performance assessment of geological disposal of high-level and TRU wastes

Kitamura, Akira

JAEA-Data/Code 2020-020, 164 Pages, 2021/03

JAEA-Data-Code-2020-020.pdf:3.11MB
JAEA-Data-Code-2020-020-appendix(DVD-ROM).zip:0.56MB

Part of JAEA's Thermodynamic Database (JAEA-TDB) for solubility and speciation of radionuclides (JAEA-TDB-RN) for performance assessment of geological disposal of high-level radioactive and TRU wastes has been updated with subsuming the database for geochemical calculations (JAEA-TDB-GC). This report has focused to update JAEA-TDB-RN after selecting change in standard Gibbs free energy of formation ($$Delta_{rm f}$$$$G^{circ}_{rm m}$$), change in standard enthalpy change of formation ($$Delta$$$$H$$$$^{circ}$$$$_{rm m}$$), standard molar entropy ($$S^{circ}$$$$_{rm m}$$) and, heat capacity ($$C^{circ}_{rm p}$$), change in standard Gibbs free energy of reaction ($$Delta_{rm r}G^{circ}$$$$_{rm m}$$), change in standard enthalpy change of reaction ($$Delta$$$$_{rm r}$$$$H$$$$^{circ}$$$$_{rm m}$$) and standard entropy change of reaction ($$Delta_{rm r}S^{circ}_{rm m}$$) as well as logarithm of equilibrium constant (log$$_{10}$$$$K^{circ}$$) at standard state. The extent of selection of these thermodynamic data enables to evaluate solubility and speciation of radionuclides at temperatures other than 298.15 K. Furthermore, the latest thermodynamic data for iron which have been critically reviewed, selected and compiled by the Nuclear Energy Agency within Organisation for Economic Co-operation and Development (OECD/NEA) have been accepted. Most of previously selected log$$_{10}$$$$K^{circ}$$ have been refined to confirm internal consistency with JAEA-TDB-GC. Text files of the updated JAEA-TDB have been provided for geochemical calculation programs of PHREEQC and Geochemist's Workbench.

Journal Articles

Benchmarks of depletion and decay heat calculation between MENDEL and MARBLE

Yokoyama, Kenji; Lahaye, S.*

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.109 - 116, 2020/10

CEA/DEN/DM2S/SERMA and JAEA/NSEC are working on benchmarks for burnup, isotopic concentrations and decay heat calculations in the collaboration framework between both organisms. Both actors of this benchmark are independently developing their own simulation code systems for computing quantities of interest in nuclear fuel cycle domain: MENDEL in CEA and MARBLE in JAEA. The purpose of the benchmark is to verify each system by comparing both calculation results on specific applications. MENDEL uses a several solvers for the resolution of Bateman equation. Runge-Kutta method or Chebyshev Rational Approximation method (CRAM) are used for irradiation computations. An analytical solver can also be used for decay calculations. MARBLE can use Krylov subspace method or CRAM method. As the first phase of the benchmark, we compared the calculated results of decay heat and isotropic concentrations following by a Pu-239 fast fission pulse. We applied nuclear data from three libraries: (1) JEFF-3.1.1, (2) JENDL/DDF-2015 + JENDL/FPY-2011, and (3) ENDF/B-VII.1. Nuclear data and burnup chain were generated from these libraries independently on each system. We confirmed that the results for both systems were in very good agreement with each other. Numerical results were also compared to experimental data. As the second phase of the benchmark, we are proceeding with a burnup calculation benchmark of MENDEL and MARBLE using the nuclear data and burnup chain provided by ORLIBJ33, which is a set of cross-section data based on JENDL-3.3 for ORIGEN-2 code system. We will also compare with calculation results by the ORIGEN-2 code with ORLIBJ33. Since the series of ORLIB, that is, ORLIBJ32, ORLIBJ33, and ORLIBJ40, have been widely used especially in Japan for many years, the comparison with ORLIB is effective for confirming the performance of MENDEL and MARBLE.

341 (Records 1-20 displayed on this page)