Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 268

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Soil dust and bioaerosols as potential sources for resuspended $$^{137}$$Cs occurring near the Fukushima Dai-ichi Nuclear Power Plant

Ota, Masakazu; Takahara, Shogo; Yoshimura, Kazuya; Nagakubo, Azusa; Hirouchi, Jun; Hayashi, Naho; Abe, Tomohisa; Funaki, Hironori; Nagai, Haruyasu

Journal of Environmental Radioactivity, 264, p.107198_1 - 107198_15, 2023/08

 Times Cited Count:0 Percentile:0(Environmental Sciences)

One of the current major radiation exposure pathways from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident-fallout is inhalation of the re-suspended $$^{137}$$Cs occurring in air. While wind-induced soil particle resuspension has been recognized as a primary mechanism of $$^{137}$$Cs resuspension, studies following the FDNPP accident suggested that fungal spores can be a significant source of the atmospheric $$^{137}$$Cs particularly in the rural areas such as difficult-to-return zone (DRZ). To elucidate the relative importance of the two resuspension phenomena, we propose a model simulating resuspension of $$^{137}$$Cs as soil particles and fungal spores, and applied it to DRZ. Our model's calculation showed that soil particle resuspension was responsible for the surface-air $$^{137}$$Cs observed during winter-spring, but could not account for the higher $$^{137}$$Cs concentrations observed in summer-autumn. The higher concentrations in the summer-autumn were in general reproduced by implementing fungal spore $$^{137}$$Cs emission, that replenished low soil particle $$^{137}$$Cs resuspension in that period. According to our model's concept, $$^{137}$$Cs accumulation in fungal spores and high spore emission rate characterized by the rural environment were likely responsible for the abundance of spore $$^{137}$$Cs in the air. It was inferred that the influence of the fungal spores on the atmospheric $$^{137}$$Cs would last longer since un-decontaminated forests still exist in DRZ.

Journal Articles

Sorption structure of cesium in various clay minerals by Cs ${it L$_{1}$}$-edge XAFS measurement

Tsuji, Takuya; Matsumura, Daiju; Kobayashi, Toru

SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 11(4), p.214 - 217, 2023/08

no abstracts in English

Journal Articles

Thirty-year prediction of $$^{137}$$Cs supply from rivers to coastal waters off Fukushima considering human activities

Ikenoue, Tsubasa; Shimadera, Hikari*; Nakanishi, Takahiro; Kondo, Akira*

Water (Internet), 15(15), p.2734_1 - 2734_18, 2023/08

 Times Cited Count:0 Percentile:0.01

The Fukushima Daiichi Nuclear Power Plant accident caused an accumulation of $$^{137}$$Cs in coastal sediment. The $$^{137}$$Cs supply from rivers to the ocean can affect the long-term fate of $$^{137}$$Cs in coastal sediment. Since the Fukushima coastal river basins include large decontaminated and evacuation order areas, considering the decontamination work and resumption of agriculture is important for predicting the $$^{137}$$Cs supply. We conducted a 30-year prediction of the $$^{137}$$Cs supply from the Fukushima coastal rivers to the ocean using a distributed radiocesium prediction model, considering the effects of human activities. In river basins with decontaminated and evacuation order areas, human activities reduced the total $$^{137}$$Cs outflow from agricultural lands, urban lands, and forest areas to the rivers and the $$^{137}$$Cs supply to the ocean by 5.0% and 6.0%, respectively. These results indicated that human activities slightly impacted the $$^{137}$$Cs outflow and supply. The $$^{137}$$Cs supply from rivers impacted by the accident to the coastal sediment was estimated to correspond to 11-36% of the total $$^{137}$$Cs in the coastal sediment in the early phase of the accident. Therefore, the $$^{137}$$Cs supply from rivers to the ocean is important for the long-term behavior of $$^{137}$$Cs in coastal sediment.

Journal Articles

Occurrence of radioactive cesium-rich micro-particles (CsMPs) in a school building located 2.8 km south-west of the Fukushima Daiichi Nuclear Power Plant

Fueda, Kazuki*; Komiya, Tatsuki*; Minomo, Kenta*; Horie, Kenji*; Takehara, Mami*; Yamasaki, Shinya*; Shiotsu, Hiroyuki; Onuki, Toshihiko*; Grambow, B.*; Law, G. T. W.*; et al.

Chemosphere, 328, p.138566_1 - 138566_12, 2023/07

 Times Cited Count:0 Percentile:0(Environmental Sciences)

Journal Articles

$$^{137}$$Cs transfer from soils contaminated by resuspended particles to Japanese mustard spinach in difficult-to-return zone of Fukushima

Tatsuno, Takahiro*; Nihei, Naoto*; Yoshimura, Kazuya; Ote, Nobuhito*

Journal of Radioanalytical and Nuclear Chemistry, 332(6), p.1677 - 1686, 2023/06

 Times Cited Count:0 Percentile:0.02(Chemistry, Analytical)

JAEA Reports

Research on atmospheric radioactivity concentration in the specified reconstruction and revitalization base (FY2018-FY2021)

Abe, Tomohisa; Funaki, Hironori; Yoshimura, Kazuya; Shiribiki, Natsu*; Sanada, Yukihisa

JAEA-Data/Code 2023-001, 38 Pages, 2023/05


In this study, commissioned by the Cabinet Office, we conducted a survey on radioactive materials in atmospheric dust in three municipalities (Futaba Town, Okuma Town, and Tomioka Town) in Fukushima Prefecture to contribute to the assessment of internal exposure in the Specified Reconstruction and Revitalization Base (SRRB). Air dust samplers were installed in the targeted municipalities to investigate the atmospheric $$^{137}$$Cs concentrations and to evaluate internal exposure doses based on measured value. This report summarizes the results of measurements between 2018 and 2021. A database of information on internal exposure dose assessment results based on atmospheric radioactivity concentrations and actual measurements, and meteorological observation data was compiled.

Journal Articles

A New application technique of a position-sensitive liquid light guide Cerenkov counter for the simultaneous position detection of $$^{90}$$Sr/$$^{90}$$Y and $$^{137}$$Cs radioactivity

Terasaka, Yuta; Uritani, Akira*

Nuclear Instruments and Methods in Physics Research A, 1049, p.168071_1 - 168071_7, 2023/04

 Times Cited Count:0 Percentile:0.03(Instruments & Instrumentation)

Journal Articles

Effect of radioactive cesium-rich microparticles on radioactive cesium concentration and distribution coefficient in rivers flowing through the watersheds with different contaminated condition in Fukushima

Tatsuno, Takahiro*; Waki, Hiromichi*; Kakuma, Minato*; Nihei, Naoto*; Takase, Tsugiko*; Wada, Toshihiro*; Yoshimura, Kazuya; Nakanishi, Takahiro; Ote, Nobuhito*

Journal of Environmental Management, 329, p.116983_1 - 116983_13, 2023/03

 Times Cited Count:0 Percentile:0(Environmental Sciences)

JAEA Reports

Radiation monitoring via manned helicopter around the Nuclear Power Station in the fiscal year 2021 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Nagakubo, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Urabe, Yoshimi*; et al.

JAEA-Technology 2022-027, 148 Pages, 2023/02


By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been conducted around FDNPS. The results of the airborne radiation monitoring and the evaluation for temporal change of dose rate in the fiscal 2021 were summarized in this report. Analysis considering topographical effects was applied to the result of the airborne monitoring to improve the accuracy of the conventional method. In addition, technique for discriminating gamma rays from the ground and those from the airborne Rn-progenies was also utilized to evaluate their effect on airborne radiation monitoring.

JAEA Reports

Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3 (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-053, 89 Pages, 2023/02


The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3" conducted in FY2021. The present study aims to elucidate the cause of the high dosage under shield plug by clarification of to the cesium behavior of migration, adhesion to structure and deposition as well as evaluate the properties of metal-rich debris predeceasing melted through the materials science approach based on the most probable scenario of accident progression of Unit 2 and 3. In this fiscal year, the followings were achieved.

Journal Articles

Study on cesium compound formation by chemical interaction of CsOH and concrete at elevated temperatures

Luu, V. N.; Nakajima, Kunihisa

Journal of Nuclear Science and Technology, 60(2), p.153 - 164, 2023/02

 Times Cited Count:3 Percentile:77.29(Nuclear Science & Technology)

Journal Articles

Sorption structure of cesium ions for weathered biotite and kaolinite

Tsuji, Takuya; Matsumura, Daiju; Kobayashi, Toru; Yaita, Tsuyoshi

SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 11(1), p.15 - 18, 2023/02

no abstracts in English

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Daiichi Nuclear Power Station Accident in the fiscal year 2021 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2022-026, 152 Pages, 2023/01


This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2021. Car-borne surveys, a flat ground measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data to create air dose rate distribution maps, and temporal changes of the air dose rates were analyzed. Surveys on depth profile of radiocesium and in-situ measurements as for radiocesium deposition were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. Score maps to classify the importance of the measurement points were created for Fukushima Prefecture and the 80 km zone from the FDNPS, and the factors causing changes in the score when monitoring data from multiple years were used were discussed. Monitoring data in coastal area performed owing to the comprehensive radiation monitoring plan until 2020 was summarized, and temporal changes in cesium-137 were analyzed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated the air dose rate distribution data obtained in this project with respect to the region within 80 km from the FDNPS and Fukushima Prefecture. The measurement results for FY2021 were published on the "Expansion Site of Distribution Map of Radiation Dose", and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

JAEA Reports

Improvement of model for cesium chemisorption onto stainless steel in severe accident analysis code SAMPSON (Joint research)

Miwa, Shuhei; Karasawa, Hidetoshi; Nakajima, Kunihisa; Kino, Chiaki*; Suzuki, Eriko; Imoto, Jumpei

JAEA-Data/Code 2021-022, 32 Pages, 2023/01


The improved model for cesium (Cs) chemisorption onto stainless steel (SS) in the fission product (FP) chemistry database named ECUME was incorporated into the severe accident (SA) analysis code SAMPSON for the more accurate estimation of Cs distribution within nuclear reactor vessels in the TEPCO's Fukushima Daiichi Nuclear Power Station (1F). The SAMPSON with the improved model was verified based on the analysis results reproducing the experimental results which were subjected to the modeling of Cs chemisorption behavior. Then, the experiment in the facility with the temperature gradient tube to simulate SA conditions such as temperature decrease and aerosol formation was analyzed to confirm availability of the improved model to the analysis of Cs chemisorption onto SS. The SAMPSON with the improved model successfully reproduced the experimental results, which indicates that the improved model and the analytical method such as setting a method of node-junction, models of aerosol formation and the calculation method of saturated CsOH vapor pressure can be applicable to the analysis of Cs chemisorption behavior. As the information on water-solubility of Cs deposits was also prerequisite to estimate the Cs distribution in the 1F because Cs can be transported through aqueous phase after the SA, the water-solubility of chemisorbed Cs compounds was investigated. The chemisorbed compounds on SS304 have been identified to CsFeO$$_{2}$$ at 873 K to 973 K with higher water-solubility, CsFeSiO$$_{4}$$ at 973 K to 1273 K and Cs$$_{2}$$Si$$_{4}$$O$$_{9}$$ at 1073 K to 1273 K with lower water-solubility. From these results, the water-solubility of chemisorbed Cs compounds can be estimated according to the SA analysis conditions such as temperature in the reactor and the CsOH concentration affecting the amount of chemisorbed Cs.

Journal Articles

Cohesive/Adhesive strengths of CsOH-chemisorbed SS304 surfaces

Li, N.*; Sun, Y.*; Nakajima, Kunihisa; Kurosaki, Ken*

Journal of Nuclear Science and Technology, 11 Pages, 2023/00

During the Fukushima Daiichi nuclear power plant (1F) accident, an overwhelming amount of the cesium remaining in the pressure vessel could have been deposited onto 304 stainless steel (SS304) steam separators and dryers, both with large surface areas. During 1F's decommissioning, the deposited cesium is a safety hazard as it can generate radioactive dust. However, the cohesive and adhesive strengths of CsOH-chemisorbed oxide scales are yet to be defined. In this study, we investigated how CsOH-chemisorption affects the cohesive and adhesive strengths between oxide scales and SS304 substrates with a scratch tester. The scratch test results revealed that the cohesive strengths of the oxide scales decreased after CsOH-chemisorption, while adhesive failure could not be reached.

Journal Articles

The Formation mechanism of radiocesium-bearing microparticles derived from the Fukushima Daiichi Nuclear Power Plant using electron microscopy

Hagiwara, Hiroki; Kondo, Keietsu; Hidaka, Akihide

Journal of Radioanalytical and Nuclear Chemistry, 331(12), p.5905 - 5914, 2022/12

 Times Cited Count:2 Percentile:63.62(Chemistry, Analytical)

Journal Articles

A New approach to extracting biofilm from environmental plastics using ultrasound-assisted syringe treatment for isotopic analyses

Battulga, B.; Atarashi-Andoh, Mariko; Nakanishi, Takahiro; Koarashi, Jun

Science of the Total Environment, 849, p.157758_1 - 157758_11, 2022/11

 Times Cited Count:1 Percentile:21.77(Environmental Sciences)

Characterizing plastic-associated biofilms is key to the better understanding of organic material and mineral cycling in the "Plastisphere"-the thin layer of microbial life on plastics. In this study, we propose a new method to extract biofilms from environmental plastics, in order to evaluate the properties of biofilm-derived organic matter through stable carbon ($$delta$$$$^{13}$$C) and nitrogen ($$delta$$$$^{15}$$N) isotope signatures and their interactions with radionuclides especially radiocesium ($$^{137}$$Cs). After ultrasound-assisted separation from the plastics, biofilm samples were successfully collected via a sequence of syringe treatments. Biofilm-derived organic matter samples (14.5-65.4 mg) from four river mouths in Japan showed $$^{137}$$Cs activity concentrations of $$<$$75 to 820 Bq kg$$^{-1}$$ biofilm (dw), providing evidence that environmental plastics, mediated by developed biofilms, serve as a carrier for $$^{137}$$Cs in the coastal environment. Significant differences in the ($$delta$$$$^{13}$$C and $$delta$$$$^{15}$$N signatures were also obtained for the biofilms, indicating the different sources, pathways, and development processes of biofilms on plastics.

Journal Articles

Cs extraction from chloride media by calixarene crown-ethers

Simonnet, M.; Sittel, T.*; We${ss}$ling, P.*; Geist, A.*

Energies (Internet), 15(20), p.7724_1 - 7724_10, 2022/10

 Times Cited Count:0 Percentile:0(Energy & Fuels)

Journal Articles

Cesium-rich microparticles runoff during rainfall; A Case study in the Takase River

Tatsuno, Takahiro*; Waki, Hiromichi*; Kakuma, Minato*; Nihei, Naoto*; Wada, Toshihiro*; Yoshimura, Kazuya; Nakanishi, Takahiro; Ote, Nobuhito*

Radiation Protection Dosimetry, 198(13-15), p.1052 - 1057, 2022/09

 Times Cited Count:1 Percentile:40.11(Environmental Sciences)

Journal Articles

High-temperature gaseous reaction of cesium with siliceous thermal insulation; The Potential implication to the provenance of enigmatic Fukushima cesium-bearing material

Rizaal, M.; Nakajima, Kunihisa; Saito, Takumi*; Osaka, Masahiko; Okamoto, Koji*

ACS Omega (Internet), 7(33), p.29326 - 29336, 2022/08

 Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)

268 (Records 1-20 displayed on this page)