Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yoshida, Kazuo; Hiyama, Mina*; Tamaki, Hitoshi
JAEA-Research 2024-007, 24 Pages, 2024/08
An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. It has been observed experimentally that volatility of RuO is suppressed by HNO
generated by HNO
radiolysis. The analysis of chemical reactions of NO
including HNO
and HNO
in the waste tank is essential to simulate of these phenomena. To resolve this issue, an analytical approach has been attempted to couple dynamically two computer codes SHAWED and SCHERN. The simulation of boiling behavior in the tank is conducted with SHAWED. SCHERN simulates chemical behaviors of HNO
, HNO
and NO
in the tank. A programmatic coupling algorithm and a trial simulation of the accident are presented in this report.
Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*
JAEA-Research 2023-001, 26 Pages, 2023/05
An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an analytical approach has been developed using computer simulation programs to assess the radioactive source term from those facilities. The proposed approach consists analyses with three computer programs. At first, the simulation of boiling behavior in the HLLW tank is conducted with SHAWED code. Next step, the thermal-hydraulic behavior in the facility building is simulated with MELCOR code based on the results at the first step simulation such as flowed out mixed steam flow rate, temperature and volatilized Ru from the tank. The final analysis step is carried out for estimating amount of released radioactive materials with SCHERN computer code which simulates chemical behaviors of nitric acid, nitrogen oxide and Ru based on the condition also simulated MELCOR. Series of sample simulations of the accident at a hypothetical typical facility are presented with the data transfer between those codes in this report.
Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*
JAEA-Research 2021-013, 20 Pages, 2022/01
An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. An idea has been proposed to implement a steam condenser as an accident countermeasure. This measure is expected to prevent nitric acid steam diffusing in facility building and to increase gaseous Ru trapping ratio into condensed water. A simulation study has been carried out with a hypothetical typical facility building to analyze the efficiency of steam condenser. In this study, SCHERN computer code simulates chemical behaviors of Ru in nitrogen oxide, nitric acid and water mixed vapor based on the conditions obtained from simulation with thermal-hydraulic computer code MELCOR. The effectiveness of steam condenser has been analyzed quantitively in preventing mixed vapor diffusion and gaseous Ru trapping effect. Some issues to be solved in analytical model has been also clarified in this study.
Oda, Chie; Kawama, Daisuke*; Shimizu, Hiroyuki*; Benbow, S. J.*; Hirano, Fumio; Takayama, Yusuke; Takase, Hiroyasu*; Mihara, Morihiro; Honda, Akira
Journal of Advanced Concrete Technology, 19(10), p.1075 - 1087, 2021/10
Times Cited Count:0 Percentile:0.00(Construction & Building Technology)Concrete in a transuranic (TRU) waste repository is considered a suitable material to ensure safety, provide structural integrity and retard radionuclide migration after the waste containers fail. In the current study, coupling between chemical, mass-transport and mechanical, so-called non-linear processes that control concrete degradation and crack development were investigated by coupled numerical models. Application of such coupled numerical models allows identification of the dominant non-linear processes that will control long-term concrete degradation and crack development in a TRU waste repository.
Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*
JAEA-Research 2021-005, 25 Pages, 2021/08
An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an empirical correlation equation of Ru mass transfer coefficient across the vapor-liquid surface, which can be useful for quantitative simulation of Ru mitigating behavior, has been obtained from data analyses of small-scale experiments conducted to clarify gaseous Ru migrating behavior under steam-condensing condition. A simulation study has been also carried out with a hypothetical typical facility building successfully to demonstrate the feasibility of quantitative estimation of amount of Ru migrating in the facility using the obtained correlation equation implemented in SCHERN computer code which simulates chemical behaviors of nitrogen oxide based on the condition also simulated thermal-hydraulic computer code.
Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*
JAEA-Data/Code 2021-008, 35 Pages, 2021/08
An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides (NO) are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that NOx affects to the migration behavior of Ru at the anticipated atmosphere condition in cells and/or compartments of the facility building. Chemical reactions of NO
with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. The analysis program, SCHERN has been under developed to simulate chemical behavior including Ru coupled with the thermo-hydraulic condition in the flow paths in the facility building. This technical guide for SCHERN-V2 presents the overview of covered accident, analytical models including newly developed models, differential equations for numerical solution, and user instructions.
Myagmarjav, O.; Iwatsuki, Jin; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Ioka, Ikuo; Kubo, Shinji; Nomura, Mikihiro*; Yamaki, Tetsuya*; Sawada, Shinichi*; et al.
International Journal of Hydrogen Energy, 44(35), p.19141 - 19152, 2019/07
Times Cited Count:18 Percentile:48.46(Chemistry, Physical)Yoshida, Kazuo; Tamaki, Hitoshi; Yoshida, Naoki; Yoshida, Ryoichiro; Amano, Yuki; Abe, Hitoshi
Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(2), p.69 - 80, 2019/06
An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that nitrogen oxide affects strongly to the transport behavior of Ru. Chemical reactions of nitrogen oxide with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. An analysis method has been developed with coupling two types of computer codes to simulate not only thermo-hydraulic behavior but also chemical reactions in the flow paths of carrier gases. A simulation study has been also carried out with a typical facility building.
Nomura, Kazunori; Ogi, Hiromichi*; Nakahara, Masaumi; Watanabe, So; Shibata, Atsuhiro
International Journal of Nuclear and Quantum Engineering (Internet), 13(5), p.209 - 212, 2019/00
Ueta, Shohei; Aihara, Jun; Mizuta, Naoki; Goto, Minoru; Fukaya, Yuji; Tachibana, Yukio; Okamoto, Koji*
Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10
The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO) and yttria stabilized zirconia (YSZ) as an inert matrix. Especially, a zirconium carbide (ZrC) coating is one of key technologies of the 3S-TRISO, which performs as an oxygen getter to reduce the fuel failure due to internal pressure during the irradiation. R&Ds on ZrC coating directly on the dummy CeO
-YSZ kernel have been carried in the Japanese fiscal year 2017. As results of ZrC coating tests by the bromide chemical vapor deposition process, stoichiometric ZrC coatings with 3 - 18 microns of thicknesses were obtained with 0.1 kg of particle loading weight.
Noguchi, Hiroki; Takegami, Hiroaki; Kasahara, Seiji; Tanaka, Nobuyuki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kubo, Shinji
Energy Procedia, 131, p.113 - 118, 2017/12
Times Cited Count:25 Percentile:99.72(Energy & Fuels)The IS process is the most deeply investigated thermochemical water-splitting hydrogen production cycle. It is in a process engineering stage in JAEA to use industrial materials for components. Important engineering tasks are verification of integrity of the total process and stability of hydrogen production in harsh environment. A test facility using corrosion-resistant materials was constructed. The hydrogen production ability was 100 L/h. Operation tests of each section were conducted to confirm basic functions of reactors and separators, etc. Then, a trial operation for integration of the sections was successfully conducted to produce hydrogen of about 10 L/h for 8 hours.
Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji
Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.1029 - 1038, 2016/11
JAEA has been conducting R&D on the IS process for nuclear-powered hydrogen production. We have constructed a 100 NL/h-H-scale test apparatus made of industrial materials. At first, we investigated performance of components in this apparatus. In this paper, the test results of H
SO
decomposition, HI distillation, and HI decomposition were shown. In the H
SO
section, O
production rate is proportional to H
SO
feed rate and SO
decomposition ratio was estimated about 80%. In HI distillation section, we confirmed to acquire a concentrated HI solution over azeotropic HI composition in the condenser. In HI decomposition section, H
could be produced stably by HI decomposer and decomposition ratio was about 18%. The H
SO
decomposer, the HI distillation column, and the HI decomposer were workable. Based on the results added to that shown in Series I, we conducted a trial continuous operation and succeeded it for 8 hours.
Tanaka, Nobuyuki; Takegami, Hiroaki; Noguchi, Hiroki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kasahara, Seiji; Kubo, Shinji
Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.1022 - 1028, 2016/11
Japan Atomic Energy Agency (JAEA) has manufactured 100 NL/h-H-scale hydrogen test apparatus. In advance to conduct the continuous operation, we investigated performance of the components in each section of the IS process. In this paper, the results of test of Bunsen and HI concentration sections was shown. In Bunsen reaction, section, we confirmed that outlet gas flow rate included no SO
gas, indicating that all the feed SO
gas was absorbed to the solution in the Bunsen reactor for the Bunsen reaction. On the basis of these results, we evaluated that Bunsen reactor was workable. In HI concentration section, HI concentration was conducted by EED stack. As a result, it can concentrate HI in HIx solution as theoretically predicted on the basis of the previous paper. Based on the results added to that shown in Series II, we have conducted a trial continuous operation and succeeded it for 8 hours.
Hayashi, Hirokazu; Nishi, Tsuyoshi*; Sato, Takumi; Kurata, Masaki
Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.1811 - 1817, 2015/09
Transmutation of long-lived radioactive nuclides including minor actinides (MA: Np, Am, Cm) has been studied in Japan Atomic Energy Agency (JAEA). Accelerator-driven system (ADS) is regarded as one of the powerful tools for transmutation of MA under the double strata fuel cycle concept. Uranium-free nitride fuel was chosen as the first candidate fuel for MA transmutation using ADS. To improve the transmutation ratio of MA, reprocessing of spent fuel and reusing MA recovered from the spent fuels is necessary. Our target is to transmute 99% of MA arisen from commercial power reactor fuel cycle, with which the period until the radiotoxicity drops below that of natural uranium can be shorten from about 5000 years to about 300 years. A pyrochemical process has been proposed as the first candidate for reprocessing of the spent nitride fuel. This paper overviews the current status of the nitride fuel cycle technology. Our recent study on fuel fabrication, fuel property measurements, reprocessing of spent fuel, development of the property database of MA nitride fuel, and fuel behavior simulation code are introduced. Our research and development (R&D) plan based on the roadmap of the development is also introduced.
Hayashi, Hirokazu; Akabori, Mitsuo; Minato, Kazuo
Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 3 Pages, 2005/10
For a basis of the future nuclear cycle, it is very important to understand and control the behavior of TRU (Np, Pu, Am, Cm) in the nuclear fuel cycle. Experimental study of pyrochemical process of fuels containing TRU requires the facility having not only shielding for -ray and neutron but also ability to keep a high purity inert gas atmosphere; because minor actinide chlorides can easily react with oxygen or water vapor in an atmosphere. The module for TRU high temperature chemistry (TRU-HITEC) had been installed to study the basic properties of TRU in the pyrochemical processes. In the present work, the behavior of
Am in pyrochemical process was investigated by electrochemical methods.
Research Group for Actinides Science
JAERI-Conf 2005-008, 216 Pages, 2005/09
This report is the Proceedings of the 4th Workshop on Molten Salts Technology and Computer Simulation, which was held on December 20, 2004, at Tokai Research Establishment of Japan Atomic Energy Research Institute (JAERI). The purpose of this workshop is to exchange information and views on molten salts technology and computer simulation among the specialists from domestic organizations, and to discuss the recent and future research status for this research field. The intensive discussion was made among approximately 55 participants. The presentations were 14 papers including one keynote lecture.
Arai, Yasuo; Minato, Kazuo
Journal of Nuclear Materials, 344(1-3), p.180 - 185, 2005/09
Times Cited Count:24 Percentile:81.47(Materials Science, Multidisciplinary)no abstracts in English
Kasahara, Seiji; Kubo, Shinji; Hino, Ryutaro; Onuki, Kaoru; Nomura, Mikihiro*; Nakao, Shinichi*
Proceedings of AIChE 2005 Spring National Meeting (CD-ROM), 8 Pages, 2005/04
Japan Atomic Energy Research Institute (JAERI) has been conducting the research and development on the thermochemical water-splitting IS process for effective hydrogen production using nuclear heat of close to 1000 C that can be supplied from High Temperature Gas-cooled Reactor (HTGR). The activity covers the studies on the process control for the continuous hydrogen production, the process improvements in the HI decomposition procedure and the preliminary screening of corrosion resistant materials of construction. Present status of the study is presented, especially, focusing on the process flowsheeting study concerning the application of membrane process for the HI processing.
Kubo, Shinji; Nakajima, Hayato; Kasahara, Seiji; Higashi, Shunichi*; Masaki, Tomoo*; Abe, Hiroyoshi*; Onuki, Kaoru
Nuclear Engineering and Design, 233(1-3), p.347 - 354, 2004/10
Times Cited Count:190 Percentile:99.52(Nuclear Science & Technology)no abstracts in English
Kubo, Shinji; Kasahara, Seiji; Okuda, Hiroyuki; Terada, Atsuhiko; Tanaka, Nobuyuki; Inaba, Yoshitomo; Ohashi, Hirofumi; Inagaki, Yoshiyuki; Onuki, Kaoru; Hino, Ryutaro
Nuclear Engineering and Design, 233(1-3), p.355 - 362, 2004/10
Times Cited Count:62 Percentile:95.48(Nuclear Science & Technology)no abstracts in English