Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamanaka, Takamitsu*; Nakamoto, Yuki*; Sakata, Masafumi*; Shimizu, Katsuya*; Hattori, Takanori
Physics and Chemistry of Minerals, 51(1), p.4_1 - 4_10, 2024/02
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Neutron and synchrotron X-ray diffraction and electric conductivity measurements of FeTiO ilmenite were performed under pressures. Ilmenite structure is retained up to 28 GPa. Structure analysis revealed that FeO
and TiO
are compressible and less compressible below 8 GPa, respectively. The resistivity is lowest along the Fe-Ti direction that has shortest interatomic distance among all the metal ion pairs. The resistivity in the direction normal to c-axis monotonically decreases with pressure, whereas that along c-axis shows hallow-shape with pressure. Maximum entropy analysis shows that electron configuration of Fe
(3
) is more strongly changed than Ti
(3
) under compression. The anisotropic electrical conductivity and non-uniform structure change of Fe-Ti interatomic distance can be explained by the possible spin transition from high-spin state to intermediate-spin state of Fe cation.
Suetsugu, Shota*; Sakai, Hironori; Opletal, P.; Tokiwa, Yoshifumi; Haga, Yoshinori; 12 of others*
Science Advances (Internet), 10(6), p.eadk3772_1 - eadk3772_6, 2024/02
Times Cited Count:10 Percentile:97.40(Multidisciplinary Sciences)Horii, Yuta; Hirooka, Shun; Uno, Hiroki*; Ogasawara, Masahiro*; Tamura, Tetsuya*; Yamada, Tadahisa*; Furusawa, Naoya*; Murakami, Tatsutoshi; Kato, Masato
Journal of Nuclear Materials, 588, p.154799_1 - 154799_20, 2024/01
Times Cited Count:6 Percentile:77.44(Materials Science, Multidisciplinary)The thermal conductivities of near-stoichiometric (U,Pu,Am)O doped with Nd
O
/Sm
O
, which is major fission product (FP) generated by a uranium-plutonium mixed oxides (MOX) fuel irradiation, as simulated fission products are evaluated at 1073-1673 K. The thermal conductivities are calculated from the thermal diffusivities that are measured using the laser flash method. To evaluate the thermal conductivity from a homogeneity viewpoint of Nd/Sm cations in MOX, the specimens with different homogeneity of Nd/Sm are prepared using two kinds of powder made by ball-mill and fusion methods. A homogeneous Nd/Sm distribution decreases the thermal conductivity of MOX with increasing Nd/Sm content, whereas heterogeneous Nd/Sm has no influence. The effect of Nd/Sm on the thermal conductivity is studied using the classical phonon transport model (A+BT)
. The dependences of the coefficients A and B on the Nd/Sm content (C
and C
, respectively) are evaluated as: A(mK/W)=1.70
10
+ 0.93C
+ 1.20C
, B(m/W)=2.39
10
.
Kawano, Takahiro*; Mizuta, Naoki; Ueta, Shohei; Tachibana, Yukio; Yoshida, Katsumi*
JAEA-Technology 2023-014, 37 Pages, 2023/08
Fuel compact for High Temperature Gas-cooled Reactor (HTGR) is fabricated by calcinating a matrix consisting of graphite and binder with the coated fuel particle. The SiC-matrixed fuel compact uses a new matrix made of silicon carbide (SiC) replacing the conventional graphite. Applying the SiC-matrixed fuel compact for HTGRs is expected to improve their performance such as power densities. In this study, the sintering conditions for applying SiC as the matrix of fuel compacts for HTGR are selected, and the density and thermal conductivity of the prototype SiC are measured.
Ishihara, Kota*; Roppongi, Masaki*; Kobayashi, Masayuki*; Imamura, Kumpei*; Mizukami, Yuta*; Sakai, Hironori; Opletal, P.; Tokiwa, Yoshifumi; Haga, Yoshinori; Hashimoto, Kenichiro*; et al.
Nature Communications (Internet), 14, p.2966_1 - 2966_7, 2023/05
Times Cited Count:31 Percentile:98.22(Multidisciplinary Sciences)The superconducting symmetry of the heavy fermion uranium-based superconductor UTe is investigated using low temperature penetration depth measurements. The anisotropic low-energy quasiparticle excitations indicates multiple superconducting components in a chiral complex form. The most consistent is a chiral non-unitary state.
Ishihara, Kota*; Kobayashi, Masayuki*; Imamura, Kumpei*; Konczykowski, M.*; Sakai, Hironori; Opletal, P.; Tokiwa, Yoshifumi; Haga, Yoshinori; Hashimoto, Kenichiro*; Shibauchi, Takasada*
Physical Review Research (Internet), 5(2), p.L022002_1 - L022002_6, 2023/04
Lower superconducting critical fields of UTe
have been determined. Orthorhombic UTe
has magnetic easy axis along the
-axis. We found
perpendicular to
showed anomalous enhancement. By comparing with anisotropy of upper critical fields, effect of magnetic fluctuations on superconductivity is suggested.
Watanabe, Masashi; Kato, Masato
Frontiers in Nuclear Engineering (Internet), 1, p.1082324_1 - 1082324_9, 2023/01
Since the oxygen potential and the oxygen coefficient of UO have a significant impact on fuel performance, many experimental data have been obtained. However, experimental data of the oxygen potential and the oxygen diffusion coefficient in the high temperature region above 1673 K are very limited. In the present study, we aimed to obtain these data and analyze them by defect chemistry. The oxygen potentials and the oxygen chemical diffusion coefficient of UO
were measured by the gas equilibrium method in the near stoichiometric region at temperatures ranging from 1673 to 1873 K. A data set of oxygen potentials was made together with literature data and analyzed by defect chemistry. The oxygen potential of UO
was determined as a function of O/U ratio and temperature, and an equation representing the relationship was derived. The oxygen chemical diffusion coefficient values obtained in this study were reasonably close to the literature values. The oxygen partial pressure dependence of the oxygen chemical diffusion coefficients was predicted from the evaluated results of the oxygen potential data, but no clear dependence was observed.
Wu, P.*; Murai, Naoki; Li, T.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kofu, Maiko; Nakajima, Kenji; Xia, K.*; Peng, K.*; Zhang, Y.*; et al.
New Journal of Physics (Internet), 25(1), p.013032_1 - 013032_11, 2023/01
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Onuki, Yoshichika*; Settai, Rikio*; Haga, Yoshinori; Takeuchi, Tetsuya*; Hedo, Masato*; Nakama, Takao*
Quantum Science; The Frontier of Physics and Chemistry, p.21 - 63, 2022/10
Aoki, Dai*; Sakai, Hironori; Opletal, P.; Tokiwa, Yoshifumi; Ishizuka, Jun*; Yanase, Yoichi*; Harima, Hisatomo*; Nakamura, Ai*; Li, D.*; Homma, Yoshiya*; et al.
Journal of the Physical Society of Japan, 91(8), p.083704_1 - 083704_5, 2022/08
Times Cited Count:52 Percentile:98.21(Physics, Multidisciplinary)Yokoyama, Keisuke; Watanabe, Masashi; Tokoro, Daishiro*; Sugimoto, Masatoshi*; Morimoto, Kyoichi; Kato, Masato; Hino, Tetsushi*
Nuclear Materials and Energy (Internet), 31, p.101156_1 - 101156_7, 2022/06
Times Cited Count:6 Percentile:56.38(Nuclear Science & Technology)In current nuclear fuel cycle systems, to reduce the amount of high-level radioactive waste, minor actinides (MAs) bearing MOX fuel is one option for burning MAs using fast reactor. However, the effects of Am content in fuel on thermal conductivity are unclear because there are no experimental data on thermal conductivity of high Am bearing MOX fuel. In this study, The thermal conductivities of near stoichiometric (UPu
Am
)O
solid solutions(z = 0.05, 0.10, and 0.15) have been measured between room temperature (RT) and 1473 K. The thermal conductivities decreased with increasing Am content and satisfied the classical phonon transport model ((A+BT)
) up to about 1473 K. A values increased linearly with increasing Am content because the change in ionic radius affects the conduction of the phonon due to the solid solution in U
and Am
. B values were independent of Am content.
Haga, Yoshinori; Opletal, P.; Tokiwa, Yoshifumi; Yamamoto, Etsuji; Tokunaga, Yo; Kambe, Shinsaku; Sakai, Hironori
Journal of Physics; Condensed Matter, 34(17), p.175601_1 - 175601_7, 2022/04
Times Cited Count:25 Percentile:86.03(Physics, Condensed Matter)Hashimoto, Shunsuke*; Nakajima, Kenji; Kikuchi, Tatsuya*; Kamazawa, Kazuya*; Shibata, Kaoru; Yamada, Takeshi*
Journal of Molecular Liquids, 342, p.117580_1 - 117580_8, 2021/11
Times Cited Count:4 Percentile:25.25(Chemistry, Physical)Quasi-elastic neutron scattering (QENS) and pulsed-field-gradient nuclear magnetic resonance (PFGNMR) analyses of a nanofluid composed of silicon dioxide (SiO) nanoparticles and a base fluid of ethylene glycol aqueous solution were performed. The aim was to elucidate the mechanism increase in the thermal conductivity of the nanofluid above its theoretical value. The obtained experimental results indicate that SiO
particles may decrease the self-diffusion coefficient of the liquid molecules in the ethylene glycol aqueous solution because of their highly restricted motion around these nanoparticles. At a constant temperature, the thermal conductivity increases as the self-diffusion coefficient of the liquid molecules decreases in the SiO
nanofluids.
Noma, Yuichiro*; Kotegawa, Hisashi*; Kubo, Tetsuro*; To, Hideki*; Harima, Hisatomo*; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika*; Ito, Kohei*; Nakamura, Ai*; et al.
Journal of the Physical Society of Japan, 90(7), p.073707_1 - 073707_5, 2021/07
Times Cited Count:1 Percentile:12.31(Physics, Multidisciplinary)Sun, Y.*; Abe, Yuta; Muta, Hiroaki*; Oishi, Yuji*
Journal of Nuclear Science and Technology, 57(8), p.917 - 925, 2020/08
Times Cited Count:5 Percentile:44.39(Nuclear Science & Technology)Pospil, J.*; Haga, Yoshinori; Miyake, Atsushi*; Kambe, Shinsaku; Tokunaga, Yo; Tokunaga, Masashi*; Yamamoto, Etsuji; Proschek, P.*; Voln
, J.*; Sechovsk
, V.*
Physical Review B, 102(2), p.024442_1 - 024442_13, 2020/07
Times Cited Count:7 Percentile:36.02(Materials Science, Multidisciplinary)Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*
JAEA-Review 2019-029, 36 Pages, 2020/02
JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Gel Filler that Facilitates Fuel Debris Retrieval". When gel materials such as polymer, silicate and clay minerals with adjusted viscosity are used in the process of debris retrieval, the gel would not leak down from the damaged parts, resulting in the reduction of surrounding air dose rate. In addition, gel materials can reduce the diffusion and scattering of dust that is produced by cutting. For these reasons, we propose a method where inside of a containment vessel is filled by gel materials in order to simplify the debris retrieval.
Aoyama, Taisuke*; Kotegawa, Hisashi*; To, Hideki*; Kimura, Noriaki*; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika*
Physica B; Condensed Matter, 570, p.349 - 351, 2019/10
Times Cited Count:0 Percentile:0.00(Physics, Condensed Matter)Takai, Toshihide; Furukawa, Tomohiro; Yamano, Hidemasa
Nuclear Technology, 205(9), p.1164 - 1174, 2019/09
Times Cited Count:11 Percentile:71.09(Nuclear Science & Technology)Aoyama, Taisuke*; Kotegawa, Hisashi*; Kimura, Noriaki*; Yamamoto, Etsuji; Haga, Yoshinori; Onuki, Yoshichika*; To, Hideki*
Journal of the Physical Society of Japan, 88(6), p.064706_1 - 064706_7, 2019/06
Times Cited Count:1 Percentile:10.17(Physics, Multidisciplinary)