Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Takabe, Yugo; Otsuka, Noriaki; Fuyushima, Takumi; Sayato, Natsuki; Inoue, Shuichi; Morita, Hisashi; Jaroszewicz, J.*; Migdal, M.*; Onuma, Yuichi; Tobita, Masahiro*; et al.
JAEA-Technology 2022-040, 45 Pages, 2023/03
Because of the decommission of the Japan Materials Testing Reactor (JMTR), the domestic neutron irradiation facility, which had played a central role in the development of innovative nuclear reactors and the development of technologies to further improve the safety, reliability, and efficiency of light water reactors, was lost. Therefore, it has become difficult to pass on the operation techniques of the irradiation test reactors and irradiation technologies, and to train human resources. In order to cope with these issues, we conducted a study on the implementation of irradiation tests using overseas reactors as neutron irradiation sites as an alternative method. Based on the "Arrangement between the National Centre for Nuclear Research and the Japan Atomic Energy Agency for Cooperation in Research and Development on Testing Reactor," the feasibility of conducting an irradiation test at the MARIA reactor (30 MW) owned by the National Centre for Nuclear Research (NCBJ) using the temperature control system, which is one of the JMTR irradiation technologies, was examined. As a result, it was found that the irradiation test was possible by modifying the ready-made capsule manufactured in accordance with the design and manufacturing standards of the JMTR. After the modification, a penetration test, an insulation continuity test, and an operation test in the range of room temperature to 300C, which is the operating temperature of the capsule, were conducted and favorable results were obtained. We have completed the preparations prior to transport to the MARIA reactor.
Tsubaki, Hirohiko; Koizumi, Satoshi*
JAEA-Technology 2020-016, 16 Pages, 2020/11
Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development is the main part of the nuclear emergency response team of JAEA deal with Act on Special Measures Concerning Nuclear Emergency Preparedness. The section needs to train operators from every nuclear facility in JAEA to control crawler-type robots, and so on. A driving training of a crawler-type robot used a reciprocating passage (U-shaped passage look from above) is one of the important training programs. The section always assembled a reciprocating passage with borrowed parts from other sections for every training of being used the passage. The section designed and produced training-way system included a reciprocating passage with stairs in 2019 fiscal year. The system makes the section members labor-saving, possible to set any time for training and diverse training-ways with easy assembling system. This report shows design and produce training-way system for crawler-type robots against nuclear emergency of JAEA facilities by Maintenance and Operation Section for Remote Control Equipment.
Sakai, Kenji; Oi, Motoki; Teshigawara, Makoto; Naoe, Takashi; Haga, Katsuhiro; Watanabe, Akihiko*
Journal of Neutron Research, 22(2-3), p.337 - 343, 2020/10
For operating a spallation neutron source and a muon target safely and efficiently, a general control system (GCS) operates within Materials and Life Science Experimental Facility (MLF). GCS administers operation and interlock processes of many instruments under various operation status. Since the first beam injection in 2008, it has operated stably without any serious troubles for more than ten years. GCS has a data storage server storing operational data on status around target stations. It has functioned well to detect and investigate unusual situations by checking data in this server. For continuing stable operation of MLF in future, however, introduction of abnormality sign determination system (ASDS) will be necessary for picking up potential abnormalities of target stations caused by radiation damages, time-related deterioration and so on. It will judge abnormalities from slight state transitions of target stations based on analysis with various operational data throughout proton beams, target stations, and secondary beams during long-term operations. This report mentions present status of GCS, conceptual design of ASDS, and installation of an integral data storage server which can deal with various data for ASDS integrally.
Kawabata, Kuniaki; Osumi, Hisashi*; Onishi, Ken*
Nihon Kikai Gakkai-Shi, 122(1211), p.16 - 17, 2019/10
no abstracts in English
Sakai, Kenji; Obayashi, Hironari; Saito, Shigeru; Sasa, Toshinobu; Sugawara, Takanori; Watanabe, Akihiko*
JAEA-Technology 2019-009, 18 Pages, 2019/07
Construction of Transmutation Experimental Facility (TEF) is under planning in the Japan Proton Accelerator Research Complex (J-PARC) program to promote R&D on the transmutation technology with using accelerator driven systems (ADS). ADS Target Test Facility (TEF-T) in TEF will develop spallation target technology and study on target materials with irradiating high intensity proton beams on a lead-bismuth eutectic (LBE) target. For safe and efficient beam operation, a general control system (GCS) will be constructed in TEF-T. GCS comprises several subsystems, such as a network system (LAN), an integral control system (ICS), an interlock system (ILS), and a timing distribution system (TDS) according to their roles. Especially, the ICS plays the important role that executes integral operations in the entire facility, acquires, stores and distributes operation data. We planned to develop a prototype of the ICS, to evaluate its concrete performances such as data transmission speeds, data storage capability, control functions, long-term stability of the system, and to utilize them for design of the actual ICS. This report mentions to product the prototype of ICS and to apply it to remote operations of instruments for developing LBE target technology.
Sakai, Kenji; Oi, Motoki; Takada, Hiroshi; Kai, Tetsuya; Nakatani, Takeshi; Kobayashi, Yasuo*; Watanabe, Akihiko*
JAEA-Technology 2018-011, 57 Pages, 2019/01
For safely and efficiently operating a spallation neutron source and a muon target, a general control system (GCS) operates within Materials and Life Science Experimental Facility (MLF). GCS administers operation processes and interlocks of many instruments. It consists of several subsystems such as an integral control system (ICS), interlock systems (ILS), shared servers, network system, and timing distribution system (TDS). Although GCS is an independent system that controls the target stations, it works closely with the control systems of the accelerators and other facilities in J-PARC. Since the first beam injection, GCS has operated stably without any serious troubles after modification based on commissioning for operation and control. Then, significant improvements in GCS such as upgrade of ICS by changing its framework software and function enhancement of ILS were proceeded until 2015. In this way, many modifications have been proceeded in the entire GCS during a period of approximately ten years after start of beam operation. Under these situation, it is important to comprehend upgrade history and present status of GCS in order to decide its upgrade plan. This report summarizes outline, structure, roles and functions of GCS in 2017.
Kai, Tetsuya; Uchida, Toshitsugu; Kinoshita, Hidetaka; Seki, Masakazu; Oi, Motoki; Wakui, Takashi; Haga, Katsuhiro; Kasugai, Yoshimi; Takada, Hiroshi
Journal of Physics; Conference Series, 1021(1), p.012042_1 - 012042_4, 2018/06
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Hamamoto, Shimpei; Nemoto, Takahiro; Sekita, Kenji; Saito, Kenji
JAEA-Technology 2015-048, 62 Pages, 2016/03
The decarburization may take place depending on the chemical impurity composition in helium gas used as the primary coolant in High-Temperature Gas-cooled Reactors, and will significantly reduce the strength of the alloy. The ability to remove impurities by a helium purification system was designed according to the predicted generation rate of impurities so as to make the coolant become the carburizing atmosphere. It has been confirmed that the coolant becomes the carburizing atmosphere during the operation period of the High Temperature engineering Test Reactor (HTTR). However, it is necessary to consider changes of generation rates of impurities since lifetime of commercial reactor is longer than the life of the HTTR. To avoid the influence of the change of generation rate, the control of removal efficiency of impurity in the helium purification system was considered in this study. To reform the decarburizing into the carburizing atmosphere, it is effective to increase the H and CO concentration in the coolant helium. By controlling the efficiency of the Cooper Oxide Trap (CuOT), it is possible to increase the H
and CO concentrations. Therefore, an experiment was carried out by injecting the gas mixture of H
and CO into the existing purification system of HTTR to investigate the dependencies of temperature and impurity concentration on the removal efficiency of CuOT. The experimental results are described as the following, (1) By adjusting the temperature of helium at the CuOT within a range from 110
C to 50
C, it is possible to reduce the removal efficiency of H
sufficiently. (2) Temperature change of helium gas in the CuOT is sufficiently reduced by the cooler located at the downstream of the CuOT, which does not affect the primary cooling system of HTTR. As the results, the applicability of removal efficiency control of CuOT was verified to improve the decarburizing atmosphere for the actual HTGR system.
Oi, Motoki; Meigo, Shinichiro; Akutsu, Atsushi*; Kawasaki, Tomoyuki; Nishikawa, Masaaki*; Fukuda, Shimpei
Proceedings of 12th International Topical Meeting on Nuclear Applications of Accelerators (AccApp '15), p.89 - 96, 2016/00
At J-PARC, 3 GeV proton beam with power of 1MW is delivered to the spallation neutron source (JSNS) through beam transport line called 3NBT. At the high power accelerator facilities even a small abnormal event has a possibility to be critical so that the beam control system is crucial. In order to find tiny anomaly, rapid data analysis system is required. We developed control and data analysis system based on the Experimental Physics and Industrial Control System (EPICS) and Control System Studio (CSS). To carry out beam tuning efficiently, the beam control system based on the Strategic Accelerator Design (SAD) code has been developed. With the several shots of beam and by the one click of operational panel of the screen, required magnet field can be calculated and set automatically. Also we developed automated e-mail system to announce the abnormal event to the experts persons. With these systems, we can reduce both beam tuning time and down time.
Yamamoto, Tsuyoshi; Hashimoto, Yasunori*; Kitazawa, Sin-iti; Yatsuka, Eiichi; Hatae, Takaki; Sugie, Tatsuo; Ogawa, Hiroaki; Takeuchi, Masaki; Kawano, Yasunori; Itami, Kiyoshi
Fusion Engineering and Design, 96-97, p.1012 - 1016, 2015/10
Times Cited Count:5 Percentile:37.27(Nuclear Science & Technology)Japan Domestic Agency (JADA) is responsible for six diagnostic systems in the ITER project. We have successfully developed an instrumentation and control (I&C) system for the diagnostic systems. The I&C system manages internal operations for measurement such as health checks of sensors, configuration of measurement parameters, and consistency checks between measurement parameters. We developed a conversion tool to convert operational flowcharts to EPICS records. The sequencing management function coordinates the execution of operation steps by monitoring changes in the record values. It was designed so that the relationship between the records and steps is determined automatically according to the flowcharts as much as possible. We validated the performance of the I&C system for the thermocouple measurement system, and are continuing the development of even more complex I&C systems for other JADA diagnostic systems.
Oi, Motoki; Sakai, Kenji; Watanabe, Akihiko; Akutsu, Atsushi; Meigo, Shinichiro; Takada, Hiroshi
JPS Conference Proceedings (Internet), 8, p.036007_1 - 036007_5, 2015/09
This paper reports on upgrading of the monitor and operation (MO) system for a general control system (GCS) of the Materials and Life science experimental Facility (MLF) at J-PARC. The MLF-GCS consists of programmable logic controllers (PLCs), operator interfaces (OPIs) for integral control and interlock systems, shared servers, and so on. It is controlling various components of the pulsed spallation neutron source such as a mercury target and hydrogen moderators. The MO system is used for monitoring, alarm notification and remote control from the MLF control room. The GCS has been working well as expected, but current MO system which consists of the OPIs and data servers based on iFix has some problems in view of sustainable maintenance because of its poor flexibility of supported OS and software version compatibility. To overcome the problems, we upgraded the MO system to be operated using the framework of EPICS, the OPI of Control System Studio (CSS) and the server software of Postgre SQL. This improves versatility of the MO system, enabling to run on various platforms such as Windows, Linux and Mac OS. At first, we made a prototype MO system, which processed 100 points of data and 5 operation screens and verified that the MO system functions correctly. Then we made full spec MO system which processes the data point of 7000 and operation screens of 130. It was operated in parallel with the current system to evaluate its performance with real data such as data transmission speed from PLCs, control functions from OPI, storage capability of servers and long-term reliability. As results, the new MO system achieved the communication speed of 2 Hz and its operability compatible to the current system. Now, we are operating and debugging it in comparison with the current system during the operating period as a preparation for the system replacement at the end of 2014.
Moriyama, Shinichi; Shinozaki, Shinichi
Japanese Journal of Applied Physics, Part 1, 44(8), p.6224 - 6229, 2005/08
Times Cited Count:1 Percentile:4.62(Physics, Applied)The control system of RF heating system in JT-60U has been improved with a concept of dispersion processing and featuring a real time waveform shaping method. It is proper that the brand-new, dispersion processing system has higher performance and reliability than old single processor system before modification, however it is worthy of mention that improvement on operation roll sharing, using the real time waveform shaping, has enabled more efficient and smooth operation. The typical roll sharing is that a simple rectangular waveform of the RF heating power is set by the experiment operator, and the waveform is re-shaped with the parameter set by the RF operator who knows deeply the condition of the RF system at that time. The simple and flexible composition of the new control system will also enable further improvement of hardware to enhance plasma performance that is inevitable to the devices for fusion experiment.
Kikuzawa, Nobuhiro; Nagai, Ryoji
Proceedings of 2nd Annual Meeting of Particle Accelerator Society of Japan and 30th Linear Accelerator Meeting in Japan, p.430 - 432, 2005/07
no abstracts in English
Kikuzawa, Nobuhiro
JAERI-Tech 2005-022, 48 Pages, 2005/03
no abstracts in English
Inaba, Yoshitomo; Ohashi, Hirofumi; Nishihara, Tetsuo; Sato, Hiroyuki; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji
Nuclear Engineering and Design, 235(1), p.111 - 121, 2005/01
Times Cited Count:9 Percentile:52.13(Nuclear Science & Technology)Prior to the connection of a hydrogen production plant to the HTTR, the fluctuation tests of the chemical reaction in the steam reformer with the mock-up test facility of the HTTR hydrogen production system were carried out for the establishment and demonstration of the control technology. As a result, it was shown that the HTTR hydrogen production system with the same control system as the mock-up test facility can provide stable controllability for any disturbance at the steam reformer without the influence to the reactor. In addition, a dynamic simulation code for the HTTR hydrogen production system was verified with the obtained test data.
Fujii, Tsuneyuki; Seki, Masami; Moriyama, Shinichi; Terakado, Masayuki; Shinozaki, Shinichi; Hiranai, Shinichi; Shimono, Mitsugu; Hasegawa, Koichi; Yokokura, Kenji; JT-60 Team
Journal of Physics; Conference Series, 25, p.45 - 50, 2005/00
The JT-60U electron cyclotron range of frequency (ECRF) is utilized to realize high performance plasma. Its output power is 4 MW at 110 GHz. By controlling the anode voltage of the gyrotron used in the JT-60U ECRF heating system, the gyrotoron output can be controlled. Then, the anode voltage controller was developed to modulate the injected power into plasmas. This low cost controller achieved the modulation frequency 12 - 500 Hz at 0.7 MW. This controller also extended the pulse width from 5s to 16 s at 0.5 MW. For these long pulses, temperature rise of the DC break made of Alumina ceramics is estimated. Its maximum temperature becomes 140 deg. From the analysis of this temperature rise, DC break materials should be changed to low loss materials for the objective pulse width of 30 s. The stabilization of neoclassical tearing mode (NTM) was demonstrated by ECRF heating using the real-time system in which the ECRF beams are injected to the NTM location predicted from ECE measurement every 10 ms.
Tachibana, Yukio; Sawahata, Hiroaki; Iyoku, Tatsuo; Nakazawa, Toshio
Nuclear Engineering and Design, 233(1-3), p.89 - 101, 2004/10
Times Cited Count:10 Percentile:55.02(Nuclear Science & Technology)no abstracts in English
Miyamoto, Yukihiro; Sakamaki, Tsuyoshi*; Maekawa, Osamu*; Nakashima, Hiroshi
JAERI-Tech 2004-054, 72 Pages, 2004/08
A standard is provided for the radiation monitor based on LAN (Local Area Network) and PLC (Programmable Logic Controller) technology at the introduction to the Japan Proton Accelerator Research Complex (J-PARC). The monitor consists of radiation measurement equipments and the central monitoring panel. The formers are installed in the radiation field, and the latter is installed in the control room and composed of PLC, which are connected with LAN. Extension of the existing standard and the conformity to the international standard were thought as important in providing the standard. The standard is expected to improve the compatibility, maintenancability and productivity of the components.
Tamura, Fumihiko; Yoshikawa, Hiroshi; Yoshii, Masahito*; Chiba, Junsei*; Kato, Tadahiko*; Takagi, Akira*
Proceedings of 1st Annual Meeting of Particle Accelerator Society of Japan and 29th Linear Accelerator Meeting in Japan, p.677 - 679, 2004/08
We describe the overvier of the J-PARC timing system. J-PARC accelerators consists of the linac, the RCS and the MR, which have different repetition rates. The beam destinations of the linac and RCS are different in each pulse. We present the precise timing system which governs the accelerator timing.
Miyamoto, Yukihiro
Hokeikyo Nyusu, (32), p.2 - 3, 2003/10
no abstracts in English