Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Okita, Shoichiro; Fukaya, Yuji; Sakon, Atsushi*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Unesaki, Hironobu*
Nuclear Science and Engineering, 197(8), p.2251 - 2257, 2023/08
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Takeda, Takeshi
JAEA-Data/Code 2023-007, 72 Pages, 2023/07
An experiment denoted as IB-HL-01 was conducted on November 19, 2009 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment IB-HL-01 simulated a 17% hot leg intermediate break loss-of-coolant accident due to a double-ended guillotine break of pressurizer surge line in a pressurized water reactor (PWR). The break was simulated by a long nozzle upwardly mounted flush with a hot leg inner surface. The test assumptions included total failure of both high pressure injection system of emergency core cooling system (ECCS) and auxiliary feedwater system. In the experiment, relatively large size of break led to a fast transient of phenomena. The primary pressure steeply dropped after the break, and became lower than steam generator (SG) secondary-side pressure. Break flow turned from single-phase flow to two-phase flow soon after the break. Core uncovery started simultaneously with liquid level drop in downflow-side of crossover leg before loop seal clearing (LSC). The LSC was induced in both loops by steam condensation on accumulator (ACC) coolant of ECCS injected into cold legs. The whole core was quenched owing to the rapid recovery in the core liquid level after the LSC. Peak cladding temperature of simulated fuel rods was detected almost concurrently with the LSC. During the ACC coolant injection, liquid levels recovered in the hot legs and SG inlet plena because of liquid entrainment from the hot leg into the SG inlet plenum by high-velocity steam flow. After the continuous core cooling was confirmed through the actuation of low pressure injection system of ECCS, the experiment was terminated. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment IB-HL-01.
Hidaka, Akihide; Kawashima, Shigeto*; Kajino, Mizuo*
Journal of Nuclear Science and Technology, 60(7), p.743 - 758, 2023/07
Times Cited Count:2 Percentile:89.37(Nuclear Science & Technology)An accurate estimation of radionuclides released during the Fukushima accident is essential. Therefore, authors investigated Te release using the Unit emission-regression estimation method, in which the deposition distribution is weighted based on the hourly deposition obtained from mesoscale meteorological model calculations assuming Unit emissions. The previous study focused on confirming the applicability of this method. Subsequent examination revealed that if any part of the time when a release have occurred is missing from the estimated release period, the entire source term calculation will be distorted. Therefore, this study performed the recalculation by extending the estimation period to cover all major releases. Consequently, unspecified release events were clarified, and their correspondence to in-core events was confirmed. The Te release caused by Zr cladding complete oxidation can explain the regional dependence of the
Te/
Cs ratio in the soil contamination map.
Ishitsuka, Etsuo; Ho, H. Q.; Kitagawa, Kanta*; Fukuda, Takahito*; Ito, Ryo*; Nemoto, Masaya*; Kusunoki, Hayato*; Nomura, Takuro*; Nagase, Sota*; Hashimoto, Haruki*; et al.
JAEA-Technology 2023-013, 19 Pages, 2023/06
Eight people from five universities participated in the 2022 summer holiday practical training with the theme of "Technical development on HTTR". The participants practiced the feasibility study for nuclear battery, the burn-up analysis of HTTR core, the feasibility study for Cf production, the analysis of behavior on loss of forced cooling test, and the thermal-hydraulic analysis near reactor pressure vessel. In the questionnaire after this training, there were impressions such as that it was useful as a work experience, that some students found it useful for their own research, and that discussion with other university students was a good experience. These impressions suggest that this training was generally evaluated as good.
Takino, Kazuo; Oki, Shigeo
JAEA-Data/Code 2023-003, 26 Pages, 2023/05
Since next-generation fast reactors aim to achieve a higher core discharge burn-up than conventional reactors do, core neutronics design methods must be refined. Therefore, a suitable analysis condition is required for the analysis of burn-up nuclear characteristics to accomplish sufficient estimation accuracy while maintaining a low computational cost. We investigated the effect of the analysis conditions on the accuracy of estimation of the burn-up nuclear characteristics of next-generation fast reactors in terms of neutron energy groups, neutron transport theory, and spatial mesh. This study treated the following burn-up nuclear characteristics: criticality, burn-up reactivity, control rod worth, breeding ratio, assembly-wise power distribution, maximum linear heat rate, sodium void reactivity, and Doppler coefficient for the equilibrium operation cycle. As a result, it was found that the following conditions were the most suitable: 18-energy-group structure, 6 spatial meshes per assembly with diffusion approximation. Additionally, these conditions should apply to correction factors for energy group structure, spatial mesh and transport effects.
Matsumoto, Toshinori; Kawabe, Ryuhei*; Iwasawa, Yuzuru; Sugiyama, Tomoyuki; Maruyama, Yu
Annals of Nuclear Energy, 178, p.109348_1 - 109348_13, 2022/12
The Japan Atomic Energy Agency extended the applicability of their fuel-coolant interaction analysis code JASMINE to simulate the relevant phenomena of molten core in a severe accident. In order to evaluate the total coolability, it is necessary to know the mass fraction of particle, agglomerated and cake debris and the final geometry at the cavity bottom. An agglomeration model that considers the fusion of hot particles on the cavity floor was implemented in the JASMINE code. Another improvement is introduction of the melt spreading model based on the shallow water equation with consideration of crust formation at the melt surface. For optimization of adjusting parameters, we referred data from the agglomeration experiment DEFOR-A and the under-water spreading experiment PULiMS conducted by KTH in Sweden. The JASMINE analyses reproduced the most of the experimental results well with the common parameter set, suggesting that the primary phenomena are appropriately modelled.
Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji
Annals of Nuclear Energy, 179, p.109389_1 - 109389_10, 2022/12
Times Cited Count:1 Percentile:49.42(Nuclear Science & Technology)Takatsuka, Daichi*; Morita, Koji*; Liu, W.*; Zhang, T.*; Nakamura, Takeshi*; Kamiyama, Kenji
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 10 Pages, 2022/10
Matsushita, Hatsuki*; Kobayashi, Ren*; Sakai, Takaaki*; Kato, Shinya; Matsuba, Kenichi; Kamiyama, Kenji
Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-13) (Internet), 9 Pages, 2022/09
During core disruptive accidents in sodium-cooled fast reactors, the molten core material flows through flow channels, such as the control rod guide tubes, into the core inlet plenum under the core region. The molten core material can be cooled and solidified while impinging on a horizontal plate of the inlet plenum in a sodium coolant. However, the solidification and cooling behaviors of molten core materials impinged on a horizontal structure have not been sufficiently studied thus far. Notably, this is an important phenomenon that needs to be elucidated from the perspective of improving the safety of sodium-cooled fast reactors. Accordingly, a series of experiments on discharging a simulated molten core material (alumina: AlO
) into a sodium coolant on a horizontal structure was conducted at the experimental facility of the National Nuclear Center of the Republic of Kazakhstan. In this study, analyses on the sodium experiments using SIMMER-III as the fast reactor safety evaluation code were performed. The analysis methods were validated by comparing the results and experiment data. In addition, the cooling and solidification behaviors during jet impingement were evaluated. The results indicated that the molten core material exhibited fragmentation owing to the impingement on the horizontal plate and was, therefore, scattered toward the periphery. Furthermore, the simulated molten core material was evaluated to be cooled by sodium and subsequently solidified.
Yamashita, Takuya; Sato, Takumi; Madokoro, Hiroshi; Nagae, Yuji
Annals of Nuclear Energy, 173, p.109129_1 - 109129_15, 2022/08
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Isogawa, Hiroki*; Naoi, Motomasa*; Yamasaki, Seiji*; Ho, H. Q.; Katayama, Kazunari*; Matsuura, Hideaki*; Fujimoto, Nozomu*; Ishitsuka, Etsuo
JAEA-Technology 2022-015, 18 Pages, 2022/07
As a summer holiday practical training 2021, the impact of 10 years long-term shutdown on critical control rod position of the HTTR and the delayed neutron fraction () of the VHTRC-1 core were investigated using Monte-Carlo MVP code. As a result, a long-term shutdown of 10 years caused the critical control rods of the HTTR to withdraw about 4.0
0.8 cm compared to 3.9 cm in the experiment. The change in critical control rods position of the HTTR is due to the change of some fission products such as
Pu,
Am,
Pm,
Sm,
Gd. Regarding the
calculation of the VHTRC-1 core, the
value is underestimate of about 10% in comparison with the experiment value.
Ishida, Shinya; Fukano, Yoshitaka
Nihon Kikai Gakkai Rombunshu (Internet), 88(911), p.21-00304_1 - 21-00304_11, 2022/07
In previous studies, the reliability and validity of the SAS4A code was enhanced by applying Phenomena Identification and Ranking Table (PIRT) approach to the Unprotected Loss of Flow (ULOF). SAS4A code has been developed to analyze the early stage of Core Disruptive Accident (CDA), which is named Initiating Phase (IP). In this study, PIRT approach was applied to Unprotected Transient over Power (UTOP), which was one of the most important and typical events in CDA as well as ULOF. The phenomena were identified by the investigation of UTOP event progression and physical phenomena relating to UTOP were ranked. 8 key phenomena were identified and the differences in ranking between UTOP and ULOF were clarified. The code validation matrix was completed and an SAS4A model, which was not validated in ULOF, was identified and validated. SAS4A code became applicable to various scenarios by using PIRT approach to UTOP and the reliability and validity of SAS4A code were significantly enhanced.
Okita, Shoichiro; Fukaya, Yuji; Sakon, Atsushi*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Unesaki, Hironobu*
Proceedings of International Conference on Physics of Reactors 2022 (PHYSOR 2022) (Internet), 9 Pages, 2022/05
Maruyama, Shuhei
Proceedings of International Conference on Physics of Reactors 2022 (PHYSOR 2022) (Internet), 10 Pages, 2022/05
This paper proposes a new homogenization method, "Boundary Condition Free Homogenization (BCFH)". The traditional homogenization method separates the core calculation and the cell (assembly) calculation by assuming a specific boundary condition or a peripheral region in the cell calculation. Nevertheless, there are ambiguities and approximation in these assumptions, and they can also cause a decline in accuracy. BCFH aims to avoid these problems and improve the accuracy in the cell calculation such as homogenization. We imposed the conditions that the physical quantities in the cell related to the reaction rate preservation is preserved for any incoming partial current, during the homogenization. That is, the response matrices of cell average (or total) flux and outgoing partial current, to be the same form between heterogeneous and homogeneous system. As a result, homogenized parameters, such as cross-sections, superhomgenization factors, and discontinuity factors, are no longer dependent on a specific boundary condition. The new homogenized parameters obtained in this way are extended from the conventional vector form to the matrix form in BCFH. To investigate the performance of BCFH, numerical tests are done for the simplified models which originates in 750MW-class sodium-cooled fast reactor with MOX fuel core in Japan. It is found that BCFH is particularly effective in evaluating control rod reactivity worth and reaction rate distribution, compared to the traditional method. We conclude that the BCFH can be a promising homogenization concept for core neutronic analysis.
Yamashita, Takuya; Madokoro, Hiroshi; Sato, Ikken
Journal of Nuclear Engineering and Radiation Science, 8(2), p.021701_1 - 021701_13, 2022/04
Yokoyama, Kenji; Maruyama, Shuhei; Taninaka, Hiroshi; Oki, Shigeo
JAEA-Data/Code 2021-019, 115 Pages, 2022/03
In JAEA, several versions of unified cross-section set for fast reactors have been developed so far; we have developed a new unified cross-section set ADJ2017R, which is an improved version of the unified cross-section setADJ2017 for fast reactors. The unified cross-section set is used for reflecting information of C/E values (analysis / experiment values) obtained by integral experiment analyses in reactor core design via the cross-section adjustment methodology; the values are stored in the standard database for FBR core design. In the methodology, the cross-section set is adjusted by integrating the information such as uncertainty (covariance) of nuclear data, uncertainty of integral experiment / analysis, sensitivity of integral experiment with respect to nuclear data. ADJ2017R basically has the same performance as ADJ2017, but we conducted an additional investigation on ADJ2017 and revised the following two points. The first is to unify the evaluation method of the correlation coefficient of uncertainty caused by experiments (hereinafter referred to as the experimental correlation coefficient). Because it was found that the common uncertainty used in the evaluation of the experimental correlation coefficient was evaluated by two different methods, the experimental correlation coefficients were revised for all experimental data, and the evaluation method was unified. The second is the review of the integral experiment data used for the cross-section adjustment calculation. It was found that one of the experimental values of composition ratio after irradiation of the Am-243 sample has a problem in uncertainty evaluation because its experimental uncertainty is extremely small compared to the others. The cross-section adjustment calculation was, therefore, redone by excluding the experimental value. In the creation of ADJ2017, a total of 719 data sets were analyzed and evaluated, and eventually adopted 620 integral experimental data sets. In contrast, a total of 61
Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji
Extended abstracts of the 2nd Asian Conference on Thermal Sciences (Internet), 2 Pages, 2021/10
For the Japanese sodium cooled fast reactor, a fuel subassembly with an inner duct structure (FAIDUS) was designed to avoid the re-criticality by preventing the large-scale pool formation. In the present study, using the finite volume particle method, the EAGLE ID1 test which was an in-pile test performed to demonstrate the effectiveness of FAIDUS was numerically simulated and the thermal-hydraulic mechanisms underlying the heat transfer process were analyzed.
Sahboun, N. F.; Matsumoto, Toshinori; Iwasawa, Yuzuru; Sugiyama, Tomoyuki
Proceedings of Asian Symposium on Risk Assessment and Management 2021 (ASRAM 2021) (Internet), 15 Pages, 2021/10
Matsumoto, Toshinori; Iwasawa, Yuzuru; Sugiyama, Tomoyuki
Proceedings of Reactor core and Containment Cooling Systems, Long-term management and reliability (RCCS 2021) (Internet), 8 Pages, 2021/10
A methodological framework is being developed in JAEA for evaluating debris coolability at ex-vessel during the severe accident (SA) of BWR under the wet cavity strategy. The probability of ex-vessel debris coolability under the wet cavity strategy is analyzed to demonstrate the evaluation approach. Probabilistic distribution of the melt conditions ejected from the RPV was obtained as the result of the iterative analyses with MELCOR code. Five uncertainty parameters relating with the core degradation and transfer process were chosen. Parameter sets were generated by Latin hypercube sampling (LHS). JASMINE code plays the physical model to predict the mass fraction of agglomerated debris and melt pool spreading on the floor. Fifty-nine input parameter set for JASMINE code were generated by LHS again using the probabilistic distribution of melt condition determined from the results of MELCOR analyses. The depth of the water pool was set as 0.5, 1.0 and 2.0 m. The accumulated debris height was compared with the criterion to judge the debris coolability. As the result, the success probability of debris cooling was obtained through the sequence of calculations.
Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.
JAEA-Technology 2021-016, 16 Pages, 2021/09
As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (183 layers) fuel blocks with 20% enrichment of
U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.