Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 1952

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Depletion calculation of subcritical system with consideration of spontaneous fission reaction

Riyana, E. S.; Okumura, Keisuke; Sakamoto, Masahiro; Matsumura, Taichi; Terashima, Kenichi

Journal of Nuclear Science and Technology, 59(4), p.424 - 430, 2022/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

${it In situ}$ TEM observation and MD simulation of frank partial dislocation climbing in Al-Cu alloy

Chen, J.*; Yoshida, Kenta*; Suzudo, Tomoaki; Shimada, Yusuke*; Inoue, Koji*; Konno, Toyohiko*; Nagai, Yasuyoshi*

Materials Transactions, 63(4), p.468 - 474, 2022/04

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

In situ electron irradiation using high-resolution transmission electron microscopy (HRTEM) was performed to visualize the Frank loop evolution in aluminium-copper (Al-Cu) alloy with an atomic-scale spatial resolution of 0.12 nm. The ${it in situ}$ HRTEM observation along the [110] direction of the FCC-Al lattice, Frank partial dislocation bounding an intrinsic stacking fault exhibited an asymmetrical climb along the $$<$$112$$>$$ direction opposed to those in the reference pure Al under an electron irradiation, with a corresponding displacement-per-atom rate of 0.055-0.120 dpa/s. The asymmetrical climb of the partial dislocation was described as pinning effects due to Cu-Cu bonding in Guinier-Preston zones by a molecular dynamics simulation.

JAEA Reports

Development of the unified cross-section set ADJ2017R

Yokoyama, Kenji; Maruyama, Shuhei; Taninaka, Hiroshi; Oki, Shigeo

JAEA-Data/Code 2021-019, 115 Pages, 2022/03

JAEA-Data-Code-2021-019.pdf:6.21MB
JAEA-Data-Code-2021-019-appendix(CD-ROM).zip:435.94MB

In JAEA, several versions of unified cross-section set for fast reactors have been developed so far; we have developed a new unified cross-section set ADJ2017R, which is an improved version of the unified cross-section setADJ2017 for fast reactors. The unified cross-section set is used for reflecting information of C/E values (analysis / experiment values) obtained by integral experiment analyses in reactor core design via the cross-section adjustment methodology; the values are stored in the standard database for FBR core design. In the methodology, the cross-section set is adjusted by integrating the information such as uncertainty (covariance) of nuclear data, uncertainty of integral experiment / analysis, sensitivity of integral experiment with respect to nuclear data. ADJ2017R basically has the same performance as ADJ2017, but we conducted an additional investigation on ADJ2017 and revised the following two points. The first is to unify the evaluation method of the correlation coefficient of uncertainty caused by experiments (hereinafter referred to as the experimental correlation coefficient). Because it was found that the common uncertainty used in the evaluation of the experimental correlation coefficient was evaluated by two different methods, the experimental correlation coefficients were revised for all experimental data, and the evaluation method was unified. The second is the review of the integral experiment data used for the cross-section adjustment calculation. It was found that one of the experimental values of composition ratio after irradiation of the Am-243 sample has a problem in uncertainty evaluation because its experimental uncertainty is extremely small compared to the others. The cross-section adjustment calculation was, therefore, redone by excluding the experimental value. In the creation of ADJ2017, a total of 719 data sets were analyzed and evaluated, and eventually adopted 620 integral experimental data sets. In contrast, a total of 61

Journal Articles

Quasi-Monte Carlo sampling method for simulation-based dynamic probabilistic risk assessment of nuclear power plants

Kubo, Kotaro; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*

Journal of Nuclear Science and Technology, 59(3), p.357 - 367, 2022/03

 Times Cited Count:1 Percentile:53.73(Nuclear Science & Technology)

Dynamic probabilistic risk assessment (PRA), which handles epistemic and aleatory uncertainties by coupling the thermal-hydraulics simulation and probabilistic sampling, enables a more realistic and detailed analysis than conventional PRA. However, enormous calculation costs are incurred by these improvements. One solution is to select an appropriate sampling method. In this paper, we applied the Monte Carlo, Latin hypercube, grid-point, and quasi-Monte Carlo sampling methods to the dynamic PRA of a station blackout sequence in a boiling water reactor and compared each method. The result indicated that quasi-Monte Carlo sampling method handles the uncertainties most effectively in the assumed scenario.

Journal Articles

Development of a miniature electromagnet probe for the measurement of local velocity in heavy liquid metals

Ariyoshi, Gen; Obayashi, Hironari; Sasa, Toshinobu

Journal of Nuclear Science and Technology, 18 Pages, 2022/03

 Times Cited Count:0 Percentile:0.03(Nuclear Science & Technology)

Electromagnetic induction method is one of the effective techniques for local velocity measurement in heavy liquid metals. Ricou and Vives' probe and Von Weissenfluh's probe are famous instrumentations using a permanent magnet. However, sensitivity and measurement volume of the probes show unexpected variation since demagnetization of the magnet is occurred by temperature increase up to the Curie temperature. In this study, electromagnetic probe incorporating a miniature electromagnet was newly developed to overcome such unexpected variation. The diameter and the length of the sensor was 6 mm and 155 mm, respectively. The sensitivity and the measurement volume of the probe were assessed by measurement of local velocity of flowing mercury in a square channel. To clarify the validity for the measured velocity profiles, numerical velocity profiles were calculated and compared with experiment. And the validity for the measured velocity profiles were confirmed by calculated result.

Journal Articles

radioactivedecay; A Python package for radioactive decay calculations

Malins, A.; Lemoine, T.*

Journal of Open Source Software (Internet), 7(71), p.3318_1 - 3318_6, 2022/03

Journal Articles

CFD analysis of natural circulation in LBE-cooled accelerator-driven system

Sugawara, Takanori; Watanabe, Nao; Ono, Ayako; Nishihara, Kenji; Ichihara, Kyoko*; Hanzawa, Kohei*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 10 Pages, 2022/03

Japan Atomic Energy Agency (JAEA) has investigated an accelerator-driven system (ADS) to transmute minor actinides (MAs) included in high level wastes discharged from nuclear power plants. The ADS is a lead-bismuth cooled tank-type reactor with 800 MW thermal power. It is supposed that the ADS is safer than conventional critical reactors because it is operated in a subcritical state. The previous study performed the transient analyses for the typical ADS accidents such as unprotected loss of flow or beam overpower. It was shown that all calculation cases except loss of heat sink (LOHS) satisfied the no-damage criteria. To avoid the damage by LOHS, the ADS equips Direct Reactor Auxiliary Cooling System (DRACS) to remove the decay heat. The most important points of a DRACS operation are its reliability and to ensure the flowrate in a natural circulation state. This study aims to perform the CFD analysis of the natural circulation to clarify the flowrate in the ADS reactor vessel.

Journal Articles

Development of the high-power spallation neutron target of J-PARC

Haga, Katsuhiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Wakai, Eiichi; Futakawa, Masatoshi

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 13 Pages, 2022/03

The cross-flow type target was developed as the basic design of mercury target in J-PARC, and the design has been improved to realize the MW-class pulsed spallation neutron source. When the high-power and short-pulsed proton beam is injected into the mercury target, pressure waves are generated in mercury by rapid heat generation. The pressure waves induce the cavitation damages on the target vessel. Two countermeasures were adopted, namely, the injection of microbubbles into mercury and the double walled structure at the beam window. The bubble generator was installed in the target vessel to absorb the volume inflation of mercury and mitigate the pressure waves. Also, the double walled target vessel was designed to suppress the cavitation damage by the large velocity gradient of rapid mercury flow in the narrow channel of double wall. Finally, we could attain 1 MW beam operation with the duration time of 36.5 hours in 2020, and achieved the long term stable operation with 740 kW from April in 2021. This report shows the technical development of the high-power mercury target vessel in view of thermal hydraulics to attain 1 MW operation.

Journal Articles

Scaling-up capabilities of TRACE integral reactor nodalization against natural circulation phenomena in small modular reactors

Mascari, F.*; Bersano, A.*; Woods, B. G.*; Reyes, J. N.*; Welter, K.*; Nakamura, Hideo; D'Auria, F.*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03

JAEA Reports

Current status and upgrading strategies of J-PARC Materials and Life Science Experimental Facility (MLF) and related components

Teshigawara, Makoto; Nakamura, Mitsutaka; Kinsho, Michikazu; Soyama, Kazuhiko

JAEA-Technology 2021-022, 208 Pages, 2022/02

JAEA-Technology-2021-022.pdf:14.28MB

The Materials and Life science experimental Facility (MLF) is an accelerator driven pulsed spallation neutron and muon source with a 1 MW proton beam. The construction began in 2004, and we started beam operation in 2008. Although problems such as exudation of cooling water from the target container have occurred, as of April 2021, the proton beam power has reached up to 700 kW gradually, and stable operation is being performed. In recent years, the operation experience of the rated 1 MW has been steadily accumulated. Several issues such as the durability of the target container have been revealed according to the increase in the operation time. Aiming at making a further improvement of MLF, we summarized the current status of achievements for the design values, such as accelerator technology (LINAC and RCS), neutron and muon source technology, beam transportation of these particles, detection technology, and neutron and muon instruments. Based on the analysis of the current status, we tried to extract improvement points for upgrade of MLF. Through these works, we will raise new proposals that promote the upgrade of MLF, attracting young people. We would like to lead to the further success of researchers and engineers who will lead the next generation.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2021-042, 115 Pages, 2022/01

JAEA-Review-2021-042.pdf:5.18MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by

JAEA Reports

Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-041, 42 Pages, 2022/01

JAEA-Review-2021-041.pdf:2.03MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry" conducted in FY2020. On the basis of deep understanding on uranyl coordination chemistry, we design molecular structures of pentadentate ligands as functional moieties for uranium adsorption from seawater and study coordination chemistry of uranyl ion with those ligands in order to resolve current problems in uranium recovery technology from seawater and to develop novel selective and efficient adsorbents for this purpose.

JAEA Reports

Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2021-038, 65 Pages, 2022/01

JAEA-Review-2021-038.pdf:4.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2020. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under high gamma ray radiation environment (i.e. 1 kGy/h maximum) and compact-light-weight to fit constraints of the penetration size and the payload. In order to develop the monitoring system, the project aims to design and evaluate neutron detection devices based on diamond sensors and a high radiation resistive signal-processi

Journal Articles

Decrease of radionuclide sorption in hydrated cement systems by organic ligands; Comparative evaluation using experimental data and thermodynamic calculations for ISA/EDTA-actinide-cement systems

Ochs, M.*; Dolder, F.*; Tachi, Yukio

Applied Geochemistry, 136, p.105161_1 - 105161_11, 2022/01

 Times Cited Count:0

Various types of radioactive wastes and environments contain organic substances that can stabilize the aqueous complexes with radionuclides and therefore lead to a decrease of sorption. The present study focuses on testing a methodology to quantify sorption reduction factors (SRFs) in the presence of organic ligands for cement systems. Three approaches for the estimation of SRFs; (1) analogy with solubility enhancement factors, (2) radionuclide speciation based on the thermodynamic calculations, and (3) experimental sorption data in ternary systems, were coupled and tested for the representative organic ligands (ISA and EDTA) and selected key radionuclides (actinides). Our approach allows to critically evaluate the dependence of SRFs for various systems on the chosen method of quantification, in accordance with the data availability for a given systems. The reliable SRFs can only be derived from the sorption measurements in ternary systems. SRF often need to be derived in the absence of such direct evidence, and estimations need to be made based on analogies and speciation information. However, such estimates may be subject to substantial uncertainties.

Journal Articles

Revaporization behavior of cesium and iodine compounds from their deposits in the steam-boron atmosphere

Rizaal, M.; Miwa, Shuhei; Suzuki, Eriko; Imoto, Jumpei; Osaka, Masahiko; Gou$"e$llo, M.*

ACS Omega (Internet), 6(48), p.32695 - 32708, 2021/12

 Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)

Journal Articles

From recent RPT review articles; Medical application of particle and heavy ion transport code system PHITS

Furuta, Takuya

Igaku Butsuri, 41(4), P. 194, 2021/12

Number of medical uses of Particle and Heavy Ion Transport code System (PHITS) has been increased due to the recent high demands of medical use of radiations. The summary of such research works was described in the review article on medical application of Particle and Heavy Ion Transport code System PHITS published in Radiological Physics and Technology in 2021. There was a request from the editorial board of Japan Society of Medical Physics (JSMP) for writing an introductory article of this article in their internal journal. The research works on medical applications described in the review article, useful functions for medical application in PHITS, and newly opened user forum of PHITS have been introduced.

Journal Articles

Radiation-enhanced diffusion of copper in iron studied by three-dimensional atom probe

Toyama, Takeshi*; Suzudo, Tomoaki; Nagai, Yasuyoshi*; 9 of others*

Journal of Nuclear Materials, 556, p.153176_1 - 153176_7, 2021/12

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

We performed a high-precision investigation of radiation-enhanced diffusion (RED) using electron irradiation and three-dimensional atom probe (3D-AP). Cu-Fe diffusion pairs were created using high-purity Fe and Cu as base materials, and irradiated by 2 MeV electron. Cu diffusion into the Fe matrix was observed at the atomic level using 3D-AP, and the diffusion coefficient was obtained directly using Fick's law. RED was clearly observed, and the ratio of diffusion under irradiation to thermal diffusion was enhanced at low temperature. RED was quantitatively evaluated using the reaction kinetics model, and the model which consider only vacancies gave a good agreement. This gave experimental clarification that RED was dominated by irradiation-induced vacancies. In addition, the direct experimental results on the effect of irradiation on the solubility limits of Cu in Fe was obtained; solubility limits under irradiation were found to be lower than those under thermal aging.

Journal Articles

Large scale production of $$^{64}$$Cu and $$^{67}$$Cu via the $$^{64}$$Zn(n, p)$$^{64}$$Cu and $$^{68}$$Zn(n, np/d)$$^{67}$$Cu reactions using accelerator neutrons

Kawabata, Masako*; Motoishi, Shoji*; Ota, Akio*; Motomura, Arata*; Saeki, Hideya*; Tsukada, Kazuaki; Hashimoto, Shintaro; Iwamoto, Nobuyuki; Nagai, Yasuki*; Hashimoto, Kazuyuki*

Journal of Radioanalytical and Nuclear Chemistry, 330(3), p.913 - 922, 2021/12

 Times Cited Count:1 Percentile:53.73(Chemistry, Analytical)

Both $$^{64}$$Cu and $$^{67}$$Cu are promising radionuclides in nuclear medicine. Production yields of these radionuclides were quantified by irradiating 55.4 g of natural zinc with accelerator neutrons. Clinically suitable $$^{64}$$Cu and $$^{67}$$Cu yields were estimated by experimental based numerical simulations using 100 g of enriched $$^{64}$$Zn and $$^{68}$$Zn, respectively, and elevated neutron fluxes from 40 MeV, 2 mA deuterons. A combined thermal- and resin-separation method was developed to isolate $$^{64}$$Cu and $$^{67}$$Cu from zinc, resulting in 73% separation efficiency and 97% zinc recovery. Such methods can provide large scale production of $$^{64}$$Cu and $$^{67}$$Cu for clinical applications.

JAEA Reports

Semi-autonomous remote-control technology of an articulated mobile robot to recover from stuck states (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Electro-Communications*

JAEA-Review 2021-025, 33 Pages, 2021/11

JAEA-Review-2021-025.pdf:1.68MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Semi- autonomous remote-control technology of an articulated mobile robot to recover from stuck states" conducted in FY2020. The purpose of this work is to establish a recovery method of an articulated mobile robot from stuck states. In this work, a control method of the robot to recover from stuck states by using redundancy of the system is proposed. In addition, we develop two interfaces. One is a display interface as an operator can understand the situation of the robot and surrounding terrain, and the other is a control interface to provide a target motion using the proposed control method. Finally, the effectiveness of them is demonstrated by experiments using an actual robot.

Journal Articles

Stoichiometry between humate unit molecules and metal ions in supramolecular assembly induced by Cu$$^{2+}$$ and Tb$$^{3+}$$ measured by gel electrophoresis techniques

Nakano, Sumika*; Marumo, Kazuki*; Kazami, Rintaro*; Saito, Takumi*; Haraga, Tomoko; Tasaki-Handa, Yuiko*; Saito, Shingo*

Environmental Science & Technology, 55(22), p.15172 - 15180, 2021/11

 Times Cited Count:1 Percentile:0(Engineering, Environmental)

Humic acid (HA) can strongly complex with metal ions to form a supramolecular assembly via coordination binding. However, determining the supramolecular size distribution and stoichiometry between small HA unit molecules constituting HA supramolecule and metal ions has proven to be challenging. Here, we investigated the changes in the size distributions of HAs induced by Cu$$^{2+}$$ and Tb$$^{3+}$$ ions using a unique polyacrylamide gel electrophoresis (PAGE) for the separation and quantification of HA complexes and metal ions bound, followed by UV-Vis spectroscopy and EEM-PARAFAC. It was found that the supramolecular behaviors of Cu$$^{2+}$$ and Tb$$^{3+}$$ complexes with HA collected from peat and deep groundwater (HHA) differed. Our results suggest that this supramolecular stoichiometry is related to the abundance of sulfur atoms in the elemental composition of HHA. Our results provide new insights into HA supramolecules formed via metal complexation.

1952 (Records 1-20 displayed on this page)