Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 206

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Decommissioning of the Uranium Enrichment Laboratory

Kokusen, Junya; Akasaka, Shingo*; Shimizu, Osamu; Kanazawa, Hiroyuki; Honda, Junichi; Harada, Katsuya; Okamoto, Hisato

JAEA-Technology 2020-011, 70 Pages, 2020/10

JAEA-Technology-2020-011.pdf:3.37MB

The Uranium Enrichment Laboratory in the Japan Atomic Energy Agency (JAEA) was constructed in 1972 for the purpose of uranium enrichment research. The smoke emitting accident on 1989 and the fire accident on 1997 had been happened in this facility. The research on uranium enrichment was completed in JFY1998. The decommissioning work was started including the transfer of the nuclear fuel material to the other facility in JFY2012. The decommissioning work was completed in JFY2019 which are consisting of removing the hood, dismantlement of wall and ceiling with contamination caused by fire accident. The releasing the controlled area was performed after the confirmation of any contamination is not remained in the target area. The radioactive waste was generated while decommissioning, burnable and non-flammable are 1.7t and 69.5t respectively. The Laboratory will be used as a general facility for cold experiments.

JAEA Reports

Annual report for FY2018 on the activities of Department of Decommissioning and Waste Management (April 1, 2018 - March 31, 2019)

Department of Decommissioning and Waste Management

JAEA-Review 2020-012, 103 Pages, 2020/08

JAEA-Review-2020-012.pdf:8.17MB

This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2018 to March 31, 2019. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.

Journal Articles

Chemical forms of uranium evaluated by thermodynamic calculation associated with distribution of core materials in the damaged reactor pressure vessel

Ikeuchi, Hirotomo; Yano, Kimihiko; Washiya, Tadahiro

Journal of Nuclear Science and Technology, 57(6), p.704 - 718, 2020/06

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

To suggest efficient process of the fuel debris treatment after the retrieval from the Fukushima Daiichi Nuclear Power Plant (1F), thorough investigation is indispensable on potential source of U in the fuel debris. Estimation on the fuel debris accumulated in the reactor pressure vessel is specifically important due to its limited accessibility. The present study aims to estimate the chemical forms of U in the in-vessel fuel debris, especially in the minor phases such as metallic phases, by performing the thermodynamic calculation considering the material relocation and changing environment during the accident progression in the 1F Unit 2. Input conditions for the thermodynamic calculation such as composition, temperature, and oxygen amount were assumed mainly based on the results of severe accident analysis. The chemical form of U varied depending on the local amount of Fe and O. In regions of low steel content, the U-containing metallic phase was dominated by $$alpha$$-(Zr,U)(O), while regions of high steel content were dominated by Fe$$_{2}$$(Zr,U) (Laves phase). A few percent of U was transferred to the metallic phases under reducing conditions, raising challenging issues on the chemical removal of nuclear material from fuel debris.

JAEA Reports

Tritium removal of heavy water system and helium system in FUGEN

Takiya, Hiroaki; Kadowaki, Haruhiko; Matsushima, Akira; Matsuo, Hidehiko; Ishiyama, Masahiro; Aratani, Kenta; Tezuka, Masashi

JAEA-Technology 2020-001, 76 Pages, 2020/05

JAEA-Technology-2020-001.pdf:6.06MB

Advanced Thermal Reactor (ATR) FUGEN was operated for about 25 years, and now has been proceeding decommissioning after the approval of the decommissioning plan in Feb. 2008. The reactor, heavy water system and helium system are contaminated by tritium because of neutron absorption of heavy water, which is a moderator. Before dismantling these facilities, it is necessary to remove tritium from them for not only reducing the amount of tritium released to surrounding environment and the risk of internal exposure by tritium but also ensuring the workability. In first phase of decommissioning (Heavy Water and Other system Decontamination Period), tritium decontamination of the reactor, heavy water system and helium system started in 2008 and completed in 2018. This report shows the results of tritium decontamination of the reactor, heavy water system and helium system.

Journal Articles

Development of laser cutting technology of thick steel plates for nuclear facilities

Tamura, Koji*; Toyama, Shinichi

Nippon Genshiryoku Gakkai-Shi, 62(5), p.268 - 271, 2020/05

The laser cutting technology is expected to be a promising candidate for the decommissioning measure of nuclear facilities, because it has a lot of advantage such as its high controllability and excellent suitability to remote handling by robot arm, etcetera. This report describes the recent result from laser cutting technology development for thick steel materials summarizing the cutting demonstration of 300 mm thick steels and dummy pressure vessel, the analysis of cutting condition of thick steel cutting, the observation of cutting process, remote controlled cutting system, the cutting in pile of steels by the system, and countermeasure for fume produce by cutting process.

Journal Articles

Development of experimental technology for simulated fuel-assembly heating to address core-material-relocation behavior during severe accident

Abe, Yuta; Yamashita, Takuya; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021113_1 - 021113_9, 2020/04

JAEA Reports

Development of thin SiC neutron detector with high radiation resistance (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2019-042, 43 Pages, 2020/03

JAEA-Review-2019-042.pdf:25.64MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Thin SiC Neutron Detector with High Radiation Resistance". In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional radiation monitors is difficult because heavy radiation shields are needed. In the present study, we will develop a neutron detector using thin, light-weight and radiation-resistive silicon carbide (SiC) that has low sensitivity to gamma-rays as well as the data collection system in collaboration with the U.K. Using this system, the performance tests will be conducted supposing the real debris retrieval including the irradiation tests. Based on the results, we will conduct research and development aiming to make the system ready for use in real decommissioning works.

JAEA Reports

Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-034, 59 Pages, 2020/03

JAEA-Review-2019-034.pdf:3.15MB

JAEA/CLADS, conducted the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aimed to contribute to solving problems in the field of nuclear energy represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development was promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barriers of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification". Although laser processing has various advantages, one well-known disadvantage is that it generates a large amount of microparticles during the processing. Therefore, the application of laser processing to decommissioning waste contaminated with radioactive materials has been hesitant because the mechanism generating the microparticles has not been fully understood. In this study, the mechanism of microparticle production by laser processing is investigated from fundamentals. Also, we develop a laser on-line principle device to examine the nuclides present in the microparticles that are produced, based on the measurement of the particle size distribution by collecting the microparticles using aerodynamic lenses.

JAEA Reports

Development of inventory calculation modules using ORIGEN-S for decommissioning

Matsuda, Norihiro; Konno, Chikara; Ikehara, Tadashi; Okumura, Keisuke; Suyama, Kenya*

JAEA-Data/Code 2020-003, 33 Pages, 2020/03

JAEA-Data-Code-2020-003.pdf:1.85MB

Data handling modules for the radioactivity calculation code, ORIGEN-S, are developed for the reliable evaluations of radioactivity inventory. By using these modules, an activation cross-section data library for the ORIGEN-S code is updated easily and effectively based on a facility-specific neutron spectrum and multi-group neutron activation cross-section library for decommissioning of nuclear facilities, MAXS2015. In order to guarantee the reliability of the radioactivity calculations, functions of data verification in a visual way and numerical comparison between before and after the data processing are also prepared.

JAEA Reports

Annual report for FY2017 on the activities of Department of Decommissioning and Waste Management (April 1, 2017 - March 31, 2018)

Department of Decommissioning and Waste Management

JAEA-Review 2019-011, 91 Pages, 2019/10

JAEA-Review-2019-011.pdf:5.25MB

This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2017 to March 31, 2018. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.

Journal Articles

Track3; Robot technology, remote control system

Kawabata, Kuniaki; Osumi, Hisashi*; Onishi, Ken*

Nippon Kikai Gakkai-Shi, 122(1211), p.16 - 17, 2019/10

no abstracts in English

Journal Articles

Development of a GUI-based operation system for building a 3D point cloud classifier

Tanifuji, Yuta; Kawabata, Kuniaki; Hanari, Toshihide

Proceedings of 2019 IEEE Region Ten Conference (TENCON 2019) (Internet), p.36 - 40, 2019/10

Journal Articles

Proposal of laser-induced ultrasonic guided wave for corrosion detection of reinforced concrete structures in Fukushima Daiichi Nuclear Power Plant decommissioning site

Furusawa, Akinori; Takenaka, Yusuke; Nishimura, Akihiko

Applied Sciences (Internet), 9(17), p.3544_1 - 3544_12, 2019/09

 Times Cited Count:6 Percentile:14.2(Chemistry, Multidisciplinary)

Remote-controlled, non-destructive testing is necessary to detect corrosion of the reinforced concrete structures at the Fukushima Daiichi Nuclear Power Plant (NPP) de-commissioning site. This work aims to demonstrate that laser-induced ultrasonic guided wave technology can be applied to achieve this task. Hence, accelerated electrolytic corrosion is performed on a reinforced concrete specimen fabricated by embedding a steel rod into mortar. Waveforms of the laser-induced ultrasonic guided wave on the rod are measured with a previously employed piezoelectric transducer (PZT) probe, for each fixed corrosion time. Based on the results of Fourier and wavelet transforms of the waveforms, issues concerning the detection and extent of rebar corrosion are discussed. It is exhibited that the changes in bonding strength due to corrosion are distinguishable in the frequency domain of the ultrasonic signal.

Journal Articles

Effect of quenching on molten core-concrete interaction product

Kitagaki, Toru; Ikeuchi, Hirotomo; Yano, Kimihiko; Brissonneau, L.*; Tormos, B.*; Domenger, R.*; Roger, J.*; Washiya, Tadahiro

Journal of Nuclear Science and Technology, 56(9-10), p.902 - 914, 2019/09

 Times Cited Count:2 Percentile:34.3(Nuclear Science & Technology)

Journal Articles

Exploratory investigation for estimation of fuel debris criticality risk

Yamane, Yuichi; Numata, Yoshiaki*; Tonoike, Kotaro

Proceedings of 11th International Conference on Nuclear Criticality Safety (ICNC 2019) (Internet), 10 Pages, 2019/09

For the criticality safety of the operation treating the fuel debris in Fukushima Daiichi Nuclear Power Plant, the reactivity effect of its geometrical change has been investigated and the developed procedure has been applied to a trial analysis of a postulated scenario for the purpose of its verification.

JAEA Reports

Assessment report on "Development of Spent Fuel Reprocessing Technology (Vitrification of High-level Radioactive Waste)", "Implementation and Technological Development of Decommissioning of Nuclear Facilities" and "Implementation and Technological Development of Radioactive Waste Processing and Disposal" (Interim report)

Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development

JAEA-Evaluation 2019-006, 122 Pages, 2019/08

JAEA-Evaluation-2019-006.pdf:8.35MB

Japan Atomic Energy Agency (hereinafter referred to as "JAEA") consulted the "Evaluation Committee for Decommissioning and Radioactive Waste Management" (hereinafter referred to as "Committee") to perform the interim evaluation of "technology development related to spent fuel reprocessing (vitrification technology of high-level radioactive liquid waste)" project, "decommissioning of nuclear facilities and associated technology development" project and "radioactive waste treatment and disposal and associated technology development" project in accordance with the "Guideline for evaluation of government R&D activities", the "Guideline for evaluation of R&D in Ministry of Education, Culture, Sports, Science and Technology (MEXT)" and the "Operational rule for evaluation of R&D activities" by JAEA. In response to JAEA's request, the Committee assessed each project results in the view points of execution method, plans, outcomes and so on. As a result of review, the Committee concluded that each project is reasonable in accordance with the evaluation method having been decided by the Committee.

Journal Articles

Outline of the OECD/NEA/ARC-F Project

Nakatsuka, Toru; Maeda, Toshikatsu; Sugiyama, Tomoyuki; Maruyama, Yu

Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.1650 - 1656, 2019/08

The OECD/NEA is launching a new project named "Analysis of Information from Reactor Buildings and Containment Vessels of Fukushima Daiichi Nuclear Power Station (ARC-F)" Project. This project will serve as the successor to the precedent NEA project, "Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) Phase II" which investigated the accident scenarios, associated fission products behavior in the damaged units and source term to the environment. The ARC-F project comprises three tasks: Task 1: Refinement of analysis for accident scenarios and associated fission product transportation and dispersion; Task 2: Compilation and management of data and information; and Task 3: Discussion for future long-term project. Japan Atomic Energy Agency is the operating agent, responsible to lead all the tasks. Duration of the project is from January 2019 to December 2021 and the final report is planned to be published in 2022.

Journal Articles

Development of a robot simulator for remote operations for nuclear decommissioning

Kawabata, Kuniaki; Suzuki, Kenta

Proceedings of 16th International Conference on Ubiquitous Robots (UR 2019) (USB Flash Drive), p.501 - 504, 2019/06

Journal Articles

A New measuring method for elemental ratio and Vickers hardness of metal-oxide-boride materials based on Laser-Induced Breakdown Spectroscopy (LIBS)

Abe, Yuta; Otaka, Masahiko; Okazaki, Kodai*; Kawakami, Tomohiko*; Nakagiri, Toshio

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 7 Pages, 2019/05

Since the hardness of fuel debris containing boride from B$$_{4}$$C pellet in control rod is estimated to be two times higher as that of oxide, such as UO$$_{2}$$ and ZrO$$_{2}$$, it is necessary to select the efficient and appropriate operation for removal of fuel debris formed in the severe accident of nuclear power plants. We focused on the characteristics of LIBS, an innovative rapid chemical in-situ analysis technology that enables simultaneous detection of B, O, and other metal elements in fuel debris. Simulated solidified melt specimens were obtained in the plasma heating tests (CMMR-0/-2, performed by JAEA) of simulated fuel assembly (ZrO$$_{2}$$ is used to simulated UO$$_{2}$$ pellet, other materials such as stainless steel, B$$_{4}$$C are same as fuel assembly). The LIBS signals of (B/O)/Zr ratio showed good linear relationship with Vickers hardness. This technique can be also applied as in-situ assessment tool for elemental composition and Vickers hardness of metal-oxide-boride materials.

JAEA Reports

Proceedings of the Fukushima Research Conference on Development of Analytical Techniques in Waste Management (FRCWM 2018); June 19th and 20th, Tomioka Town Art & Media Center, Tomioka, Futaba, Fukushima, Japan

Saegusa, Jun; Koma, Yoshikazu; Ashida, Takashi

JAEA-Review 2018-017, 259 Pages, 2018/12

JAEA-Review-2018-017.pdf:53.88MB

Collaborative Laboratories for Advanced Decommissioning Science (CLADS) is responsible to promote international cooperation in the R&D activities on the decommissioning of Fukushima Daiichi Nuclear Power Station and to develop the necessary human resources. CLADS held the Fukushima Research Conference on Development of Analytical Techniques in Waste Management (FRCWM 2018) on 19th and 20th June, 2018. This report compiles the abstracts and the presentation materials in the above conference.

206 (Records 1-20 displayed on this page)