Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
久保 博孝; 竹永 秀信; 澤田 圭司*; 仲野 友英; 小林 進二*; 東島 智; 朝倉 伸幸; 清水 勝宏
Journal of Nuclear Materials, 337-339, p.161 - 165, 2005/03
被引用回数:16 パーセンタイル:71.22(Materials Science, Multidisciplinary)核融合研究では、ダイバータプラズマ中の水素粒子(水素分子,原子,イオン)の挙動の理解がダイバータを用いた粒子熱制御を確立するうえで必要である。JT-60Uでは、接触及び非接触ダイバータプラズマにおける水素粒子挙動を理解するために、水素原子のバルマー線及び水素分子のFulcher線を観測し、水素分子を考慮した衝突放射モデルと中性粒子輸送コードを用いて解析した。H線の強度測定から、MARFE発生時の非接触ダイバータプラズマでは、水素イオン-電子再結合によって失われるイオン束は、内側ダイバータではダイバータ板に到達するイオン束の約1倍、外側ダイバータでは約0.5倍であると評価された。また、水素分子線強度は接触ダイバータプラズマではダイバータ板から離れるにつれて約1cmの減衰長で小さくなるが、非接触ダイバータプラズマでは減衰長は約4cmであり、非接触ダイバータプラズマでは水素分子がダイバータ領域に深く侵入することが観測された。接触ダイバータプラズマに対しては、観測された水素分子線強度分布は水素分子の衝突放射モデルを用いた中性粒子輸送コードによって再現できた。
久保 博孝; 竹永 秀信; 仲野 友英; 東島 智; 清水 勝宏; 澤田 圭司*; 小林 進二*; JT-60チーム
Nuclear Fusion Research; Springer Series in Chemical Physics, Vol.78, p.121 - 134, 2004/11
ダイバータ板に到達した水素イオンのほとんどは水素分子として再放出される。炭素材ダイバータ板では、化学スパッタリングによって炭化水素分子が発生する。これら分子の挙動の理解は、ダイバータを用いた熱粒子制御を確立するために重要である。ここでは、分子輸送に関するダイバータ分光について、おもにJT-60Uでの最近の研究に基づいて、幾つかの話題を述べる。接触ダイバータプラズマでは、水素分子及び炭化水素分子の輸送を調べるために分子分光が役立っている。また、水素分子が水素原子の生成,輸送,発光に及ぼす影響に関して調べられている。一方、非接触ダイバータプラズマでは、プラズマパラメータの分布測定,振動励起など複雑な分子過程を考慮した解析が課題である。また、本研究における分子データの応用及び必要性に関して議論する。
清水 勝宏; 滝塚 知典
プラズマ・核融合学会誌, 80(3), p.183 - 189, 2004/03
小特集「周辺プラズマ研究の最近の進展」の中の第2章として、最近の研究を理解するのに必要な概念について解説する。まず、ダイバータの視点からトカマク実験の変遷を概説する。次に、スクレイプオフ層での粒子,熱輸送について説明し、上流とダイバータ板でのプラズマパラメータが簡単に評価できる「2点ダイバータモデル」について解説する。このモデルをITERに適用して、ダイバータ板への熱負荷を評価する。ダイバータ物理の重要な概念として、リサイクリング,遠隔放射冷却,非接触ダイバータプラズマ,MARFEについても説明する。