Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 13387

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Heat transfer coefficient modeling for downward saturated boiling flows in vertical pipes

Wada, Yuki; Shibamoto, Yasuteru; Hibiki, Takashi*

International Journal of Heat and Mass Transfer, 249, p.127219_1 - 127219_16, 2025/10

Journal Articles

Integrated thermal power measurement in the modified STACY for the performance inspections

Araki, Shohei; Aizawa, Eiju; Murakami, Takahiko; Arakaki, Yu; Tada, Yuta; Kamikawa, Yutaka; Hasegawa, Kenta; Yoshikawa, Tomoki; Sumiya, Masato; Seki, Masakazu; et al.

Annals of Nuclear Energy, 217, p.111323_1 - 111323_8, 2025/07

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

JAEA has modified the STACY from a homogeneous system using solution fuel to a heterogeneous system using fuel rods in order to obtain criticality characteristics of fuel debris. The modification of the STACY was completed in December 2023. A series of performance inspections were conducted for the start of experimental operations. A new thermal power calibration is required for the performance inspections in order to operate at less than 200 W, which is the permitted thermal power. However, the thermal power measurement method and calibration data used in the former STACY is no longer available due to the modification of the modified STACY. We measured the thermal power of the STACY using the activation method that was improved to adapt to the measurement condition and calibrated the power meter system. Since the positions where activation foils could be installed were very limited, the thermal power was evaluated using numerical calculations supplemented by experimental data. Neutron flux data at the positions of the activation foil was measured by the activation method. Neutron distribution in the core was calculated by the Monte Carlo code MVP. A response function of the activation foil was calculated using the PHITS. The uncertainty of the thermal power measurement was conservatively estimated to be about 15%. Four operations were conducted for the thermal power measurement. The power meter was calibrated by using three operational data and tested with the one operational data. It was found that the indicated value of the meter adjusted by the STACY before the modification work would tend to overestimate the actual output by about 40%. In addition, the current calibration was able to calibrate the meter to within 3% accuracy.

Journal Articles

Which radionuclides contribute most to seafood ingestion dose?

Johansen, M. P.*; Gwynn, J. P.*; Carpenter, J. G.*; Charmasson, S.*; Mori, Airi; Orr, B.*; Simon-Cornu, M.*; Osvath, I.*; McGinnity, P.*

Journal of Environmental Radioactivity, 287, p.107706_1 - 107706_8, 2025/07

 Times Cited Count:0

Journal Articles

Non-condensable gas accumulation and distribution due to condensation in the CIGMA Facility; Implications for Fukushima Daiichi Unit 3 (1F3)

Hamdani, A.; Soma, Shu; Abe, Satoshi; Shibamoto, Yasuteru

Progress in Nuclear Energy, 185, p.105771_1 - 105771_13, 2025/07

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

JAEA Reports

Development of extremely small amount analysis technology for fuel debris analysis (Contract Research) FY2023 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2024-064, 118 Pages, 2025/06

JAEA-Review-2024-064.pdf:6.73MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted from FY2019 to FY2023. Understanding the properties of fuel debris is necessary for handling, criticality control, storage control, etc. A key technique is the chemical analysis of actinide nuclides. We developed sample pretreatment technology and separation / analysis process required for chemical analysis. The purpose of this study is to streamline future planned fuel debris analysis. To promote 1F decommissioning, we will train human resources through on-the-job training. In particular, we applied the extremely small amount analysis (ICP-MS/MS), which has recently been successful in the fields of analytical chemistry and radiochemistry, to the nuclear field. This method allows high-accuracy analysis without pretreatment to isolate the nuclide to be measured. The separation pretreatment can be skipped and a rapid analysis process can be established.

JAEA Reports

Verification of analytical model of MELCOR code for accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Hiyama, Mina*; Tamaki, Hitoshi

JAEA-Research 2025-003, 24 Pages, 2025/06

JAEA-Research-2025-003.pdf:2.06MB

An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (RuO$$_{4}$$) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. RuO$$_{4}$$ is expected to be absorbed chemically into water dissolving nitrous acid. Condensation of mixed vapor plays an important role for Ru transporting behavior in the facility building. The thermal-hydraulic behavior in the facility building is simulated with MELCOR code. The latent heat, which is a governing factor for vapor condensing behavior, has almost same value for nitric acid and water at the temperature range under 120 centigrade. Considering this thermal characteristic, it is assumed that the amount of nitric acid is substituted with mole-equivalent water in MELCOR simulation. Compensating modeling induced deviation by this assumption have been assembled with control function features of MELCOR. The comparison results have been described conducted between original simulation and modified simulation with compensating model in this report. It has been revealed that the total amount of pool water in the facility was as same as both simulations.

JAEA Reports

Detailed computational models for nuclear criticality analyses on the first startup cores of NSRR: A TRIGA annular core pulse reactor

Yanagisawa, Hiroshi; Motome, Yuiko

JAEA-Research 2025-001, 99 Pages, 2025/06

JAEA-Research-2025-001.pdf:1.98MB

The detailed computational models for nuclear criticality analyses on the first startup cores of NSRR (Nuclear Safety Research Reactor), which is categorized as a TRIGA-ACPR (Annular Core Pulse Reactor), were created for the purposes of deeper understandings of safety inspection data on the neutron absorber rod worths of reactivity and improvement of determination technique of the reactivity worths. The uncertainties in effective neutron multiplication factor (k$$_{rm eff}$$) propagated from errors in the geometry, material, and operation data for the present models were evaluated in detail by using the MVP version 3 code with the latest Japanese nuclear data library, JENDL-5, and the previous versions of JENDL libraries. As a result, the overall uncertainties in k$$_{rm eff}$$ for the present models were evaluated to be in the range of 0.0027 to 0.0029 $$Delta$$k$$_{rm eff}$$. It is expected that the present models will be utilized as the benchmark on k$$_{rm eff}$$ for TRIGA-ACPR. Moreover, it is confirmed that the overall uncertainties were sufficiently smaller than the values of absorber rod worths determined in NSRR. Thus, it is also considered that the present models are applicable to further analyses on the absorber rod worths in NSRR.

JAEA Reports

Steam Explosion Simulation Code JASMINE v.3 User's Guide; Revised for code version 3.3c

Iwasawa, Yuzuru; Matsumoto, Toshinori; Moriyama, Kiyofumi*

JAEA-Data/Code 2025-001, 199 Pages, 2025/06

JAEA-Data-Code-2025-001.pdf:9.71MB

A steam explosion is defined as a phenomenon that occurs when a hot liquid comes into contact with a low-temperature cold liquid with volatile properties. The rapid transfer of heat from the hot liquid to the cold liquid results in a chain reaction of the explosive vaporization of the cold liquid and fine fragmentation of the hot liquid. The explosive vaporization of the cold liquid initiates the propagation of shock waves in the cold liquid. The expansion of the hot and cold liquid mixture exerts mechanical forces on the surrounding structures. In severe accidents of light water reactors, the molten core (melt) is displaced into the coolant water, resulting in fuel-coolant interactions (FCIs). The explosive FCI, referred to as a steam explosion, has been identified as a significant safety assessment issue as it can compromise the integrity of the primary containment vessel. The JASMINE code is an analytical tool developed to evaluate the mechanical forces imposed by steam explosions in nuclear reactors. It performs numerical simulations of steam explosions in a mechanistic manner. The present report describes modeling concepts, basic equations, numerical solutions, and example simulations, as well as instructions for input preparation, code execution, and the use of supporting tools for practical purpose. The present report is the updated version of the "Steam Explosion Simulation Code JASMINE v.3 User's Guide, JAEA-Data/ Code 2008-014". The present report was compiled and updated based on the latest version of the code, JASMINE 3.3c, with corrections for minor errors of the distributed code JASMINE 3.3b, and conformance to recently widely used compilers on UNIX-like environments such as the GNU compiler. The numerical simulations described in the present report were obtained using the latest version JASMINE 3.3c. The latest parameter adjustment method for a model parameter proposed by the previous study is employed to conduct the numerical simulations.

Journal Articles

Numerical analysis of natural convective heat transfer with porous medium using JUPITER

Uesawa, Shinichiro; Yamashita, Susumu; Sano, Yoshihiko*; Yoshida, Hiroyuki

Journal of Nuclear Science and Technology, 62(6), p.523 - 541, 2025/06

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Japan Atomic Energy Agency (JAEA) has developed a numerical method with the JUPITER code with a porous medium model to calculate the thermal behavior in PCVs of 1F. In this study, we performed an experiment and numerical simulation of the natural convective heat transfer with the porous medium to validate JUPITER with the porous medium model. In comparison of the temperature and velocity distributions between the experiment and simulation, the temperature distribution in the simulation was in good agreement with the distribution in the experiment except the temperature near the top surface of the porous medium. The velocity distribution also agreed qualitatively with the experimental result. In addition, we also performed the numerical simulations with various effective thermal conductivity models to discuss the effect of the conductivity based on the internal structure of porous media on the natural convective heat transfer. The result indicated that the temperature distribution in the porous medium and the velocity distribution of the natural convection were significantly different for each model, and thus the conductivity of the fuel debris was one of the key parameters of in the thermal behavior analysis in 1F.

Journal Articles

Uncertainty analysis of the inverse LASSO estimation scheme on radioactive source distributions inside reactor building rooms from air does rate measurements

Shi, W.*; Machida, Masahiko; Yamada, Susumu; Okamoto, Koji

Progress in Nuclear Energy, 184, p.105710_1 - 105710_10, 2025/06

 Times Cited Count:0

Very recently, Least Absolute Shrinkage and Selection Operator (LASSO) has been proposed as a scheme capable to inversely estimate radioactive source distributions inside reactor building rooms from air dose rate measurements together with the predicted lower bound of the measurement numbers for successful reconstructions. However, no one has ever analyzed how the uncertainty of input data including the measurement errors influences the accuracy of the inverse estimation results. In this paper, we therefore perform uncertainty analysis of the LASSO scheme and suggest an uncertainty estimation function derived based on the theory of Candes. We actually demonstrate in two types of numerical tests with different input uncertainties obtained by using Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS) that the calculated errors obey the proposed uncertainty estimation function. Thus, the LASSO scheme allows to successfully estimate radioactive distributions within the predicted uncertainty.

JAEA Reports

Seismic reinforcement works of Waste Treatment Facility No.2

Kinoshita, Junichi; Sakamoto, Yu; Suzuki, Ichiro; Nakajima, Ryota; Morita, Yusuke; Irie, Hirobumi

JAEA-Technology 2024-027, 55 Pages, 2025/05

JAEA-Technology-2024-027.pdf:8.49MB

The Waste Treatment Facility No.2 has equipment that can process solid waste with relatively high radioactive levels generated within the Japan Atomic Energy Agency. This facility had been constructed under the old Building Standards Act. Seismic evaluation based on a new regulatory requirements enforced in December 2013 was executed, thereby, it was found that the seismic resistance requirements was insufficient according to the current Building Standards Act. Therefore, seismic reinforcement works was carried out from November 2018 to February 2020. In this report, seismic reinforcement design, works, test and inspection was complied.

JAEA Reports

Investigation of measurement accuracy of burnup reactivity of accelerator-driven system during normal operation

Katano, Ryota; Abe, Takumi; Cibert, H.*

JAEA-Research 2024-019, 22 Pages, 2025/05

JAEA-Research-2024-019.pdf:1.03MB

An accelerator-driven system (ADS) dedicated to transmutation of minor actinides (MAs) is driven in subcritical states. It is important for establishment of the subcriticality control of ADS to predict the burnup reactivity. To validate the prediction accuracy, the burnup reactivity, especially at the first cycle, must be measured with sufficient accuracy. In this study, we focus on Current-To-Flux (CTF) method. We have simulated the burnup reactivity monitoring during the ADS normal operation with the CTF method by performing fixed-source-burnup calculations using a continuous energy Monte Carlo code SERPENT2 with some tallies that models in-core fission chambers and have estimated its measurement uncertainty. We have clarified that the 10% biases of measure burnup reactivities appear independently of the burnup duration and their detector position dependence is particularly small in the outer region of the system.

Journal Articles

Numerical analysis of a potential Reactor Pressure Vessel (RPV) boundary failure mechanism in Fukushima Daiichi Nuclear Power Station Unit-2

Li, X.; Yamaji, Akifumi*; Sato, Ikken*; Yamashita, Takuya

Annals of Nuclear Energy, 214, p.111217_1 - 111217_13, 2025/05

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Journal Articles

Analysis of dissolved radionuclides trapped into corrosion products formed on carbon steel and the corresponding increase in radioactivity

Aoyama, Takahito; Ueno, Fumiyoshi; Sato, Tomonori; Kato, Chiaki; Sano, Naruto; Yamashita, Naoki; Otani, Kyohei; Igarashi, Takahiro

Annals of Nuclear Energy, 214, p.111229_1 - 111229_6, 2025/05

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Journal Articles

Ingestion doses from radionuclides in seafood before and after the Fukushima Daiichi Nuclear Power Plant accident

Mori, Airi; Johansen, M. P.*; McGinnity, P.*; Takahara, Shogo

Communications Earth & Environment (Internet), 6, p.356_1 - 356_11, 2025/05

 Times Cited Count:0

Journal Articles

Human resource development project for decommissioning of Fukushima Daiichi NPS; Focusing on engineering and management skills in severe environment

Usami, Hiroshi; Yoshinaga, Kyohei*; Fujikawa, Keigo*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 67(5), p.295 - 299, 2025/05

no abstracts in English

Journal Articles

Development of a method for the determination of spontaneous fission nuclides in irradiated fuel and applicability to Pu quantification in fuel debris by dual time neutron measurements

Nagatani, Taketeru; Kosuge, Yoshihiro*; Sagara, Hiroshi*; Nakaguki, Sho; Nomi, Takayoshi; Okumura, Keisuke

Progress in Nuclear Science and Technology (Internet), 7, p.41 - 46, 2025/05

Journal Articles

Scenario analysis of future nuclear energy use in Japan, 1; Methodology of nuclear fuel cycle simulator: NMB4.0

Abe, Takumi; Oizumi, Akito; Nishihara, Kenji; Nakase, Masahiko*; Asano, Hidekazu*; Takeshita, Kenji*

Progress in Nuclear Science and Technology (Internet), 7, p.299 - 304, 2025/05

Currently, much research continues on stable energy sources that do not emit CO$$_{2}$$ in order to achieve a carbon-neutral and sustainable society. Nuclear energy is one of the such sources, and various new reactors and reprocessing technologies are being developed. In order to implement the nuclear fuel cycle with these technologies, a nuclear fuel cycle simulator is required to quantitatively evaluate various quantities, such as the distribution of nuclear fuel materials and the scale of waste loading. For this purpose, NMB4.0 was developed in collaboration with Tokyo Institute of Technology and Japan Atomic Energy Agency. This code calculates the material balance of 179 nuclides including actinides and fission products (FPs) from the front-end to the back-end and simulates the nuclear fuel cycle in an integrated manner. Unlike other nuclear fuel cycle simulators, the code is capable of performing precise back-end analyses such as the number of radioactive wastes and the scale of the geological repository considering heat generation of waste package under diverse nuclear energy scenario, and is an open source code that runs on Microsoft Excel. By these features, it is possible to quantitatively study nuclear energy utilization strategies with various stakeholders. The presentation will detail the numerical model used in NMB4.0.

Journal Articles

New filter concept for removal of fine particle generated in high level radioactive solution

Takahatake, Yoko; Watanabe, So; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki

Progress in Nuclear Science and Technology (Internet), 7, p.195 - 198, 2025/05

Extraction chromatgraphy technology for trivalent minor actinide (MA(III) ; Am(III) and Cm(III)) recovery from the solution generated by an extraction process in reprocessing of spent nuclear fuel has been developed. A fine particle is generated in the solution. The fine particle must be removed before MA recovery operation, because that leads clogging of the extraction chlomatography column. In order to prevent clogging the column, filtration system utilizing porous silica beads packed column has been designed. In this study, a fine particle trapping system was developed and particle removal performance of the system was experimentally evaluated using alumina particles as simulated fine particle. Column experiments revealed that the fine particle with the particle size from 0.12 to 15 $$mu$$m is cause of clogging of the filtration column. Since simulated fine particles were trapped on filtration experiments, a filtration system using the porous silica beads column is practical,

Journal Articles

13387 (Records 1-20 displayed on this page)