Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Doi, Daisuke
International Journal of Hydrogen Energy, 91, p.1245 - 1252, 2024/11
Miyazawa, Takeshi; Uwaba, Tomoyuki; Yano, Yasuhide; Tanno, Takashi; Otsuka, Satoshi; Onizawa, Takashi; Ando, Masanori; Kaito, Takeji
JAEA-Technology 2024-009, 140 Pages, 2024/10
For the purpose of enhancing the reliability of fast reactor fuel designing using modified type 316 steel, the out-of-pile and in-pile mechanical data of modified type 316 steel cladding tubes and wrapper tubes were statistically analyzed with the knowledge on material science and engineering; the high-temperature strength equations of modified type 316 steel, which can be applied to high-dose neutron irradiation environment, were derived. The out-of-pile high-temperature tensile and creep data of modified type 316 steel cladding tubes and wrapper tubes were derived up to 900C, which is higher than the upper limit temperature of anticipated transient event of fast reactor. Using the extended database, the best-fit equation and the lower limit equation were derived for out-of-pile 0.2% proof strength, ultimate tensile strength and creep rupture strength while the best-fit equation and the upper and lower limit equations for creep strain. Furthermore, the degradation factors for tensile and creep strength, which will be produced by in-reactor environment (i.e., neutron irradiation in liquid sodium), were evaluated using the existing neutron irradiation data of modified type 316 steel, which were derived using the experimental fast reactor Joyo, the French proto-type fast reactor Phenix, the American experimental fast reactor FFTF. The derived equations were validated by the comparison with the experimental data.
Yamano, Hidemasa; Futagami, Satoshi; Shibata, Akihiro*
Proceedings of Advanced Reactor Safety (ARS 2024), p.151 - 160, 2024/08
This study examined the application of safety design criteria (SDC) and safety design guideline (SDG) developed in the Generation-IV international forum on the active reactor shutdown system (RSS) to sodium-cooled fast reactors (SFRs) recently designed in Japan.
Yamano, Hidemasa; Futagami, Satoshi; Higurashi, Koichi*
Proceedings of Advanced Reactor Safety (ARS 2024), p.121 - 130, 2024/08
This paper describes the application of safety design criteria (SDC) and safety design guideline (SDG) developed in the Generation-IV international forum on decay heat removal system (DHRS) enhancing reliability to sodium-cooled fast reactors (SFRs) recently designed in Japan.
Emura, Yuki; Takai, Toshihide; Kikuchi, Shin; Kamiyama, Kenji; Yamano, Hidemasa; Yokoyama, Hiroki*; Sakamoto, Kan*
Journal of Nuclear Science and Technology, 61(7), p.911 - 920, 2024/07
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Ishida, Shinya; Uchibori, Akihiro; Okano, Yasushi
Dai-28-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2024/06
no abstracts in English
Miyazawa, Takeshi; Tanno, Takashi; Imagawa, Yuya; Hashidate, Ryuta; Yano, Yasuhide; Kaito, Takeji; Otsuka, Satoshi; Mitsuhara, Masatoshi*; Toyama, Takeshi*; Onuma, Masato*; et al.
Journal of Nuclear Materials, 593, p.155008_1 - 155008_16, 2024/05
Yamamoto, Tomohiko; Kato, Atsushi; Hayakawa, Masato; Shimoyama, Kazuhito; Ara, Kuniaki; Hatakeyama, Nozomu*; Yamauchi, Kanau*; Eda, Yuhei*; Yui, Masahiro*
Nuclear Engineering and Technology, 56(3), p.893 - 899, 2024/03
Kamide, Hideki; Kawasaki, Nobuchika; Hayafune, Hiroki; Kubo, Shigenobu; Chikazawa, Yoshitaka; Maeda, Seiichiro; Sagayama, Yutaka; Nishihara, Tetsuo; Sumita, Junya; Shibata, Taiju; et al.
Jisedai Genshiro Ga Hiraku Atarashii Shijo; NSA/Commentaries, No.28, p.14 - 36, 2023/10
Developments of next generation nuclear reactors, e.g., Fast Reactor, and High Temperature Gas cooled Reactor, are in progress. They can contribute to markets of electricity and industrial heat utilization in the world including Japan. Here, current status of reactor developments in Japan and also situation in the world are summarized, especially for activities of Generation IV International Forum (GIF), developments of Fast Reactor and High Temperature Gas cooled Reactor in Japan, and SMR movements in the world.
Ohno, Shuji; Maeda, Seiichiro
Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 3 Pages, 2023/09
Kosaka, Wataru; Uchibori, Akihiro; Okano, Yasushi; Yanagisawa, Hideki*
Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.1150 - 1163, 2023/08
The leakage of pressurized water from a steam generator (SG) and the progress after that are a key issue in the safety assessment or design of a SG in sodium-cooled fast reactor. The analysis code LEAP-III can evaluate a rate of water leakage during the long-term event progress, i.e., from the self-wastage initiated by an occurrence of a microscopic crack in a tube wall to the water leak detection and water/water-vapor blowdown. Since LEAP-III consists of semi-empirical formulae and one-dimensional equations of conservation, it has an advantage in short computation time. Thus, LEAP-III can facilitate the exploration of various new SG designs in the development of innovative reactors. However, there are several problems, such as an excessive conservative result in some case and the need for numerous experiments or preliminary analyses to determine tuning parameters of models in LEAP-III. Hence, we have developed a Lagrangian particle method code, which is characterized by a simpler computational principle and faster calculation. In this study, we have improved the existing particle pair search method for interparticle interaction in this code and developed an alternative model without the pair search. Through the trial analysis simulating in a tube bundle system, it was confirmed that new models reduced the computation time. In addition, it was shown that representative temperatures of the heat-transfer tubes evaluated by this particle method code, which is used to predict the tube failure in LEAP-III, were good agreement with that by SERAPHIM, which is a detailed mechanistic analysis method code.
Li, C.-Y.; Wang, K.*; Uchibori, Akihiro; Okano, Yasushi; Pellegrini, M.*; Erkan, N.*; Takata, Takashi*; Okamoto, Koji*
Applied Sciences (Internet), 13(13), p.7705_1 - 7705_29, 2023/07
Times Cited Count:1 Percentile:52.66(Chemistry, Multidisciplinary)Tsai, T.-H.; Sasaki, Shinji; Maeda, Koji
Journal of Nuclear Science and Technology, 60(6), p.715 - 723, 2023/06
Times Cited Count:1 Percentile:27.23(Nuclear Science & Technology)Takino, Kazuo; Oki, Shigeo
JAEA-Data/Code 2023-003, 26 Pages, 2023/05
Since next-generation fast reactors aim to achieve a higher core discharge burn-up than conventional reactors do, core neutronics design methods must be refined. Therefore, a suitable analysis condition is required for the analysis of burn-up nuclear characteristics to accomplish sufficient estimation accuracy while maintaining a low computational cost. We investigated the effect of the analysis conditions on the accuracy of estimation of the burn-up nuclear characteristics of next-generation fast reactors in terms of neutron energy groups, neutron transport theory, and spatial mesh. This study treated the following burn-up nuclear characteristics: criticality, burn-up reactivity, control rod worth, breeding ratio, assembly-wise power distribution, maximum linear heat rate, sodium void reactivity, and Doppler coefficient for the equilibrium operation cycle. As a result, it was found that the following conditions were the most suitable: 18-energy-group structure, 6 spatial meshes per assembly with diffusion approximation. Additionally, these conditions should apply to correction factors for energy group structure, spatial mesh and transport effects.
Li, C.-Y.; Watanabe, Akira*; Uchibori, Akihiro; Okano, Yasushi
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05
Yamamoto, Tomohiko; Kato, Atsushi; Hayakawa, Masato; Shimoyama, Kazuhito; Ara, Kuniaki; Hatakeyama, Nozomu*; Yamauchi, Kanau*; Eda, Yuhei*; Yui, Masahiro*
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 6 Pages, 2023/04
Yokoyama, Kenji
EPJ Web of Conferences, 281, p.00004_1 - 00004_10, 2023/03
In Japan, development of adjusted nuclear data library for fast rector application based on the cross-section adjustment method has been conducted since the early 1990s. The adjusted library is called the unified cross-section set. The first version was developed in 1991 and is called ADJ91. Recently, the integral experimental data were further expanded to improve the design prediction accuracy of the core loaded with minor actinoids and/or degraded Pu. Using the additional integral experimental data, development of ADJ2017 was started in 2017. In 2022, the latest unified cross-section set AJD2017R was developed based on JENDL-4.0 by using 619 integral experimental data. An overview of the latest version with a review of previous ones will be shown. On the other hand, JENDL-5 was released in 2021. In the development of JENDL-5, some of the integral experimental data used in ADJ2017R were explicitly utilized in the nuclear data evaluation. However, this is not reflected in the covariance data. This situation needs to be considered when developing a unified cross-section set based on JENDL-5. Preliminary adjustment calculation based on JENDL-5 is performed using C/E (calculation/experiment) values simply evaluated by a sensitivity analysis. The preliminary results will be also discussed.
Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Kamide, Hideki
Handbook of Generation IV Nuclear Reactors, Second Edition, p.173 - 194, 2023/03
Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. JAEA contributes to Chapter 5; Sodium-cooled Fast Reactors (SFRs) and Chapter 12; Generation-IV Sodium-cooled Fast Reactor (SFR) concepts in Japan. Major characteristics and current technology developments including safety enhancement were described in Chapter 5. Chapter 12 shows design activities of SFR. Innovative technology developments, and update of the Japan sodium-cooled fast reactor design with lessons learned from the TEPCO Fukushima Daiichi NPP accident.
Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji
Annals of Nuclear Energy, 179, p.109389_1 - 109389_10, 2022/12
Times Cited Count:1 Percentile:27.23(Nuclear Science & Technology)Ohgama, Kazuya; Takegoshi, Atsushi*; Katagiri, Hiroki; Hazama, Taira
Nuclear Technology, 208(10), p.1619 - 1633, 2022/10
Times Cited Count:4 Percentile:74.52(Nuclear Science & Technology)