Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Wada, Yuki; Shibamoto, Yasuteru; Hibiki, Takashi*
International Journal of Heat and Mass Transfer, 239, p.126598_1 - 126598_18, 2025/04
Times Cited Count:0Brear, D. J.*; Kondo, Satoru; Sogabe, Joji; Tobita, Yoshiharu*; Kamiyama, Kenji
JAEA-Research 2024-009, 134 Pages, 2024/10
The SIMMER-III/SIMMER-IV computer codes are being used for liquid-metal fast reactor (LMFR) core disruptive accident (CDA) analysis. The sequence of events predicted in a CDA is often influenced by the heat exchanges between LMFR materials, which are controlled by heat transfer coefficients (HTCs) in the respective materials. The mass transfer processes of melting and freezing, and vaporization and condensation are also controlled by HTCs. The complexities in determining HTCs in a multi-component and multi-phase system are the number of HTCs to be defined at binary contact areas of a fluid with other fluids and structure surfaces, and the modes of heat transfer taking into account different flow topologies representing flow regimes with and without structure. As a result, dozens of HTCs are evaluated in each mesh cell for the heat and mass transfer calculations. This report describes the role of HTCs in SIMMER-III/SIMMER-IV, the heat transfer correlations implemented and the calculation of HTCs in all topologies in multi-component, multi-phase flows. A complete description of the physical basis of HTCs and available experimental correlations is contained in Appendices to this report. The major achievement of the code assessment program conducted in parallel with code development is summarized with respect to HTC modeling to demonstrate that the coding is reliable and that the model is applicable to various multi-phase problems with and without reactor materials.
Okawa, Tomio*; Mori, Shoji*; Liu, W.*; Ose, Yasuo*; Yoshida, Hiroyuki; Ono, Ayako
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(12), p.820 - 824, 2021/12
The evaluation method of the critical heat flux based on the mechanism is needed for the efficient design and development of fuel in reactors and the appropriate safety evaluation. In this paper, the current researches relating to the mechanism of the critical heat flux are reviewed, and the issue to be considered in the future are discussed.
Saito, Shimpei*; De Rosis, A.*; Fei, L.*; Luo, K. H.*; Ebihara, Kenichi; Kaneko, Akiko*; Abe, Yutaka*
Physics of Fluids, 33(2), p.023307_1 - 023307_21, 2021/02
Times Cited Count:43 Percentile:98.23(Mechanics)A Boiling phenomenon in a liquid flow field is known as forced-convection boiling. We numerically investigated the boiling system on a cylinder in a flow at a saturated condition. To deal with such a phenomenon, we developed a numerical scheme based on the pseudopotential lattice Boltzmann method. The collision was performed in the space of central moments (CMs) to enhance stability for high Reynolds numbers. Furthermore, additional terms for thermodynamic consistency were derived in a CMs framework. The effectiveness of the model was tested against some boiling processes, including nucleation, growth, and departure of a vapor bubble for high Reynolds numbers. Our model can reproduce all the boiling regimes without the artificial initial vapor phase. We found that the Nukiyama curve appears even though the focused system is the forced-convection system. Also, our simulations support experimental observations of intermittent direct solid-liquid contact even in the film-boiling regime.
Koizumi, Yasuo*; Uesawa, Shinichiro; Ono, Ayako; Shibata, Mitsuhiko; Yoshida, Hiroyuki
Nihon Kikai Gakkai Netsu Kogaku Konfuarensu 2019 Koen Rombunshu (USB Flash Drive), 1 Pages, 2019/10
no abstracts in English
Liu, W.; Podowski, M. Z.*
Nihon Kikai Gakkai Netsu Kogaku Konfuarensu 2015 Koen Rombunshu (CD-ROM), 2 Pages, 2015/10
This paper gives prediction to the transient heat transfer at Departure of Nucleate Boiling (DNB) point for subcooled flow boiling. The prediction is carried out by solving the heat conduction equations in cylindrical coordinates with convective boundary condition, which changes with the change of the heat transfer mode on the heated surface. DNB is assumed to happen at the complete dryout of liquid sublayer trapped between the heated wall and an elongated vapor clot, during the passing time of the vapor clot. Important parameters including initial thickness of the liquid sublayer, vapor clot length, vapor clot velocity and void fraction etc., are calculated from the Liu - Nariai model. The initial heater surface temperature is derived from the Jens-Lottes correlation. The transient changes of liquid sublayer thickness, surface temperature at DNB are reported. No obvious temperature jumping is observed at DNB. To predict temperate excursion at Critical Heat Flux (CHF), more simulations to the transient boiling and film boiling processes are needed.
Liu, W.; Nariai, Hideki*
Journal of Heat Transfer, 127(2), p.149 - 158, 2005/02
Times Cited Count:17 Percentile:53.93(Thermodynamics)Homogeneous nucleation, although being discounted as a mechanism for vapor formation for water in most conditions, is found being possible to occur under some extreme conditions in subcooled flow boiling. In this paper, firstly, the existence of the homogeneous nucleation governed condition is indicated. Followed, a criterion is developed to judge a given working condition is the conventional one or the homogeneous nucleation governed one. With the criterion, subcooled flow boiling data are categorized and typical homogeneous nucleation governed datasets are listed. CHF triggering mechanism for the homogeneous nucleation governed condition is proposed and verified. Parametric trends of the CHF, in terms of mass flux, pressure, inlet subcooling, channel diameter and the ratio of heated length to diameter are also studied.
Onuki, Akira; Takase, Kazuyuki; Kureta, Masatoshi*; Yoshida, Hiroyuki; Tamai, Hidesada; Liu, W.; Akimoto, Hajime
Proceedings of Japan-US Seminar on Two-Phase Flow Dynamics, p.317 - 325, 2004/12
We start R&D project to develop the predictable technology for thermal-hydraulic performance of Reduced-Moderation Water Reactor (RMWR) in collaboration with Power Company/reactor vendor/university since 2002. The RMWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured BWR technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron energy. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important R&D items for the RMWR because of the tight lattice configuration. In this paper, we will show the R&D plan and describe the current status on experimental and analytical studies. We will confirm the thermal-hydraulic performance in the tight-lattice bundles by this project and develop a predictable technology for the RMWR in future.
Iguchi, Tadashi; Shibamoto, Yasuteru; Asaka, Hideaki; Nakamura, Hideo
Proceedings of 11th International Conference on Nuclear Engineering (ICONE-11) (CD-ROM), 8 Pages, 2003/04
Authors investigated the cooling limit under flow instability, by conducting THYNC experiments using a 22 bundle test section of electrical rod heaters、whose heated lengths and diameters were 3.71m and 12.3mm. The experimental result indicated periodic rise and rapid drop of the rod temperature under flow oscillation, indicating periodic film boiling. When the heating power increased further, the rod temperature indicated continuous film boiling. The power at the onset of continuous film boiling (cooling limit) under flow oscillation was about 50%-80% of the cooling limit under steady flow condition in THYNC. The ratio of both cooling limits almost agreed with the Umekawa model prediction in cases of P
2MPa and G
400kg/m2s. For high pressure and high mass flux conditions, the ratio almost agreed with the empirical model based on the heat balance during one cycle of flow oscillation. TRAC-BF1 code simulated periodic film boiling qualitatively, but the cooling limit under the flow oscillation was not predicted well probably due to inaccurate rewetting prediction.
Kaminaga, Fumito*
JAERI-Tech 2002-012, 68 Pages, 2002/03
no abstracts in English
Kinoshita, Hidetaka; Nariai, Hideki*; Inasaka, Fujio*
JSME International Journal, Series B, 44(1), p.81 - 89, 2001/01
no abstracts in English
Onuki, Akira; Nakamura, Hideo; Anoda, Yoshinari
Dai-7-Kai Doryoku Enerugi Gijutsu Shimpojiumu Koen Rombunshu (00-11), p.258 - 263, 2000/00
no abstracts in English
Onuki, Akira; Akimoto, Hajime
Journal of Nuclear Science and Technology, 36(11), p.1021 - 1029, 1999/11
Times Cited Count:1 Percentile:13.15(Nuclear Science & Technology)no abstracts in English
Takenaka, Nobuyuki*; Asano, Hitoshi*; Fujii, Terushige*; Ushiro, Toshihiko*; Iwatani, Junji*; Murata, Yutaka*; Mochiki, Koichi*; Taguchi, Akira*; Matsubayashi, Masahito; Tsuruno, Akira
Nuclear Instruments and Methods in Physics Research A, 377(1), p.174 - 176, 1996/07
Times Cited Count:1 Percentile:23.44(Instruments & Instrumentation)no abstracts in English
Transient Thermal Hydraulics,Heat Transfer,Fluid-structue Interaction,and Structural Dynamics,ASME94, 0, p.65 - 73, 1994/00
no abstracts in English
Onuki, Akira; ; Murao, Yoshio
JAERI-M 93-139, 85 Pages, 1993/07
no abstracts in English
Onuki, Akira; ; Murao, Yoshio
JAERI-M 93-138, 55 Pages, 1993/07
no abstracts in English
; Onuki, Akira; ; Murao, Yoshio
JAERI-M 93-032, 190 Pages, 1993/03
no abstracts in English
Tanzawa, Sadamitsu; ;
JAERI-M 91-215, 40 Pages, 1992/01
no abstracts in English
Kumamaru, Hiroshige; Kukita, Yutaka
ANS Proc. 1991 National Heat Transfer Conf., Vol. 5, p.22 - 29, 1991/00
no abstracts in English