Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Miyazawa, Takeshi; Uwaba, Tomoyuki; Yano, Yasuhide; Tanno, Takashi; Otsuka, Satoshi; Onizawa, Takashi; Ando, Masanori; Kaito, Takeji
JAEA-Technology 2024-009, 140 Pages, 2024/10
For the purpose of enhancing the reliability of fast reactor fuel designing using modified type 316 steel, the out-of-pile and in-pile mechanical data of modified type 316 steel cladding tubes and wrapper tubes were statistically analyzed with the knowledge on material science and engineering; the high-temperature strength equations of modified type 316 steel, which can be applied to high-dose neutron irradiation environment, were derived. The out-of-pile high-temperature tensile and creep data of modified type 316 steel cladding tubes and wrapper tubes were derived up to 900C, which is higher than the upper limit temperature of anticipated transient event of fast reactor. Using the extended database, the best-fit equation and the lower limit equation were derived for out-of-pile 0.2% proof strength, ultimate tensile strength and creep rupture strength while the best-fit equation and the upper and lower limit equations for creep strain. Furthermore, the degradation factors for tensile and creep strength, which will be produced by in-reactor environment (i.e., neutron irradiation in liquid sodium), were evaluated using the existing neutron irradiation data of modified type 316 steel, which were derived using the experimental fast reactor Joyo, the French proto-type fast reactor Phenix, the American experimental fast reactor FFTF. The derived equations were validated by the comparison with the experimental data.
Taniguchi, Yoshinori; Mihara, Takeshi; Kakiuchi, Kazuo; Udagawa, Yutaka
Annals of Nuclear Energy, 195, p.110144_1 - 110144_11, 2024/01
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Rizaal, M.; Nakajima, Kunihisa; Saito, Takumi*; Osaka, Masahiko; Okamoto, Koji*
ACS Omega (Internet), 7(33), p.29326 - 29336, 2022/08
Times Cited Count:4 Percentile:35.22(Chemistry, Multidisciplinary)Taniguchi, Yoshinori; Udagawa, Yutaka; Mihara, Takeshi; Amaya, Masaki; Kakiuchi, Kazuo
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.551 - 558, 2019/09
Oka, Hiroshi; Tanno, Takashi; Otsuka, Satoshi; Yano, Yasuhide; Kaito, Takeji
Nuclear Materials and Energy (Internet), 16, p.230 - 237, 2018/08
Times Cited Count:4 Percentile:34.86(Nuclear Science & Technology)Chanyshev, A. D.*; Litasov, K. D.*; Rashchenko, S.*; Sano, Asami; Kagi, Hiroyuki*; Hattori, Takanori; Shatskiy, A. F.*; Dymshits, A. M.*; Sharygin, I. S.*; Higo, Yuji*
Crystal Growth & Design, 18(5), p.3016 - 3026, 2018/05
Times Cited Count:20 Percentile:83.90(Chemistry, Multidisciplinary)The high-temperature structural properties of solid benzene were studied at 1.5-8.2 GPa up to melting or decomposition using multi-anvil apparatus and in situ neutron and X-ray diffraction. The crystal structure of deuterated benzene phase II (P2/c unit cell) was refined at 3.6-8.2 GPa and 473-873 K. Our data show a minor temperature effect on the change in the unit cell parameters of deuterated benzene at 7.8-8.2 GPa. At 3.6-4.0 GPa, we observed the deviation of deuterium atoms from the benzene ring plane and minor zigzag deformation of the benzene ring, enhancing with the temperature increase caused by the displacement of benzene molecules and decrease of van der Waals bond length between the
-conjuncted carbon skeleton and the deuterium atom of adjacent molecule. Deformation of benzene molecule at 723-773 K and 3.9-4.0 GPa could be related to the benzene oligomerization at the same conditions. In the pressure range of 1.5-8.2 GPa, benzene decomposition was defined between 773-923 K. Melting was identified at 2.2 GPa and 573 K. Quenched products analyzed by Raman spectroscopy consist of carbonaceous material. The defined benzene phase diagram appears to be consistent with those of naphthalene, pyrene, and coronene at 1.5-8 GPa.
Oka, Hiroshi; Tanno, Takashi; Otsuka, Satoshi; Yano, Yasuhide; Uwaba, Tomoyuki; Kaito, Takeji; Onuma, Masato*
Nuclear Materials and Energy (Internet), 9, p.346 - 352, 2016/12
Times Cited Count:22 Percentile:87.99(Nuclear Science & Technology)Serizawa, Hiroyuki; Kikuchi, Hironobu; Iwai, Takashi; Arai, Yasuo; Kurosawa, Makoto; Mimura, Hideaki; Abe, Jiro
JAERI-Tech 2005-039, 23 Pages, 2005/07
A high-temperature ultrasonic measuring system had been designed and installed in a glovebox (711-DGB) to study a mechanical property of nuclear fuel containing trans-uranium (TRU) elements. A figuration apparatus for the cylinder-type sample preparation had also been modified and installed in an established glovebox (142-D). The system consists of an ultrasonic probe, a heating furnace, cooling water-circulating system, a cooling air compressor, vacuum system, gas supplying system and control system. An A/D converter board and an pulsar/Receiver board for the measurement of wave velocity were installed in a personal computer. The apparatus was modified to install into the glovebox. Some safety functions were supplied to the control system. The shape and size of the sample was revised to minimize the amount of TRU elements for the use of the measurement. The maximum sample temperature is 1500 C. The performance of the installed apparatuses and the glovebox were confirmed through a series of tests.
Ogawa, Toru; Minato, Kazuo; Sawa, Kazuhiro
Proceedings of 11th International Conference on Nuclear Engineering (ICONE-11) (CD-ROM), 6 Pages, 2003/04
no abstracts in English
Tsukada, Takashi
Zairyo To Kankyo, 52(2), p.66 - 72, 2003/02
Irradiation assisted stress corrosion cracking (IASCC) is a potential failure mode suffered by the core-components of austenitic stainless steels in the aged light-water reactor (LWR), which is the intergranular type cracking caused by synergistic effects of neutron/gamma radiation and chemical environment. Effects of radiation on the materials and high-temperature water are discussed in this paper to understand IASCC phenomenon from a mechanistic viewpoint. It is essential to elucidate the radiation-induced microcompositional and microstructural changes in the alloy for mechanistic and predictive investigations of IASCC. Although grain boundary segregations of alloying and impurity elements are significant factors affecting IASCC, it has been considered that the radiation-induced microstructural and mechanical changes of materials play critical roles in IASCC. For mechanistic understanding of IASCC, further fundamental research works with experimental and theoretical approaches are needed. Efforts directed to the researches at the Japan Atomic Energy Research Institute are also described.
Ashikagaya, Yoshinobu; Yoshino, Toshiaki; Yasu, Katsuji; Kurosawa, Yoshiaki; Sawa, Kazuhiro
JAERI-Tech 2002-094, 80 Pages, 2002/12
no abstracts in English
Yamane, Tsuyoshi; Yamashita, Kiyonobu; Fujimoto, Nozomu
New approaches to the nuclear fuel cycles and related disposal schemes, 1, p.267 - 277, 1998/00
no abstracts in English
Akabori, Mitsuo; Shiratori, Tetsuo
Journal of Nuclear Science and Technology, 31(6), p.539 - 545, 1994/06
Times Cited Count:16 Percentile:78.21(Nuclear Science & Technology)no abstracts in English
; Kumamaru, Hiroshige; Murata, Hideo; Anoda, Yoshinari; Kukita, Yutaka
JAERI-M 93-200, 56 Pages, 1993/10
no abstracts in English
; ; Matoba, Toru; Yamamoto, Shin
Reza Kenkyu, 20(6), p.375 - 391, 1992/06
no abstracts in English
Hada, Kazuhiko; Okubo, Minoru; Baba, Osamu
Nucl. Eng. Des., 132, p.13 - 21, 1991/00
Times Cited Count:1 Percentile:19.81(Nuclear Science & Technology)no abstracts in English
Hada, Kazuhiko; Nishiguchi, Isoharu; ; Tsuji, Hirokazu
Nucl. Eng. Des., 132, p.1 - 11, 1991/00
Times Cited Count:25 Percentile:90.53(Nuclear Science & Technology)no abstracts in English
Uetsuka, Hiroshi;
JAERI-M 89-150, 27 Pages, 1989/10
no abstracts in English
; ; ; ; ;
Nihon Genshiryoku Gakkai-Shi, 29(2), p.133 - 140, 1987/02
Times Cited Count:1 Percentile:19.23(Nuclear Science & Technology)no abstracts in English
Journal of Nuclear Materials, 138, p.131 - 134, 1986/00
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)no abstracts in English