Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 5685

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Anisotropic thermal lattice expansion and crystallographic structure of strontium aluminide within Al-10Sr alloy as measured by in-situ neutron diffraction

Liss, K.-D.*; Harjo, S.; Kawasaki, Takuro; Aizawa, Kazuya; Xu, P. G.

Journal of Alloys and Compounds, 869, p.159232_1 - 159232_9, 2021/07

Journal Articles

Effect of interlayer cations on montmorillonite swelling; Comparison between molecular dynamic simulations and experiments

Yotsuji, Kenji*; Tachi, Yukio; Sakuma, Hiroshi*; Kawamura, Katsuyuki*

Applied Clay Science, 204, p.106034_1 - 106034_13, 2021/04

 Times Cited Count:0

Journal Articles

Leaching behavior of radionuclides from samples prepared from spent fuel rod comparable to core debris in the 1F NPS

Onishi, Takashi; Maeda, Koji; Katsuyama, Kozo

Journal of Nuclear Science and Technology, 58(4), p.383 - 398, 2021/04

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

Journal Articles

Stochastic estimation of radionuclide composition in wastes generated at Fukushima Daiichi Nuclear Power Station using Bayesian inference

Sugiyama, Daisuke*; Nakabayashi, Ryo*; Tanaka, Shingo*; Koma, Yoshikazu; Takahatake, Yoko

Journal of Nuclear Science and Technology, 58(4), p.493 - 506, 2021/04

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

Journal Articles

Journal Articles

Application of probabilistic fracture mechanics to reactor pressure vessel using PASCAL4 code

Lu, K.; Katsuyama, Jinya; Li, Y.; Yoshimura, Shinobu*

Journal of Pressure Vessel Technology, 143(2), p.021505_1 - 021505_8, 2021/04

 Times Cited Count:0

JAEA Reports

Technical basis of ECCS acceptance criteria for light-water reactors and applicability to high burnup fuel

Nagase, Fumihisa; Narukawa, Takafumi; Amaya, Masaki

JAEA-Review 2020-076, 129 Pages, 2021/03

JAEA-Review-2020-076.pdf:3.9MB

Each light-water reactor (LWR) is equipped with the Emergency Core Cooling System (ECCS) to maintain the coolability of the reactor core and to suppress the release of radioactive fission products to the environment even in a loss-of-coolant accident (LOCA) caused by breaks in the reactor coolant pressure boundary. The acceptance criteria for ECCS have been established in order to evaluate the ECCS performance and confirm the sufficient safety margin in the evaluation. The limits defined in the criteria were determined in 1975 and reviewed based on state-of-the-art knowledge in 1981. Though the fuel burnup extension and necessary improvements of cladding materials and fuel design have been conducted, the criteria have not been reviewed since then. Meanwhile, much technical knowledge has been accumulated regarding the behavior of high-burnup fuel during LOCAs and the applicability of the criteria to the high-burnup fuel. This report provides a comprehensive review of the history and technical bases of the current criteria and summarizes state-of-the-art technical findings regarding the fuel behavior during LOCAs. The applicability of the current criteria to the high-burnup fuel is also discussed.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2018 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-074, 105 Pages, 2021/03

JAEA-Review-2020-074.pdf:3.72MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and TPL (Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2018. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2017 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-073, 113 Pages, 2021/03

JAEA-Review-2020-073.pdf:3.87MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory. This annual report describes the activities of our department in fiscal year of 2017. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2016 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-072, 102 Pages, 2021/03

JAEA-Review-2020-072.pdf:3.86MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2016. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Investigation and consideration on evaluation of radiation doses to residents in the case of a nuclear emergency

Hashimoto, Makoto; Kinase, Sakae; Munakata, Masahiro; Murayama, Takashi; Takahashi, Masa; Takada, Chie; Okamoto, Akiko; Hayakawa, Tsuyoshi; Sukegawa, Masato; Kume, Nobuhide*; et al.

JAEA-Review 2020-071, 53 Pages, 2021/03

JAEA-Review-2020-071.pdf:2.72MB

In the case of a nuclear accident or a radiological emergency, the Japan Atomic Energy Agency (JAEA), as a designated public corporation assigned in the Disaster Countermeasures Basic Act and the Armed Attack Situation Response Law, undertakes technical supports to the national government and local governments. The JAEA is requested to support to evaluate radiation doses to residents in a nuclear emergency, which is specified in the Basic Disaster Management Plan and the Nuclear Emergency Response Manual. For the dose evaluation, however, its strategy, target, method, structure and so on have not been determined either specifically or in detail. This report describes the results of investigation and consideration discussed in the "Working Group for Radiation Dose Evaluation at a Nuclear Emergency" established within the Nuclear Emergency Assistance and Training Center to discuss technical supports for radiation dose evaluation to residents in the case of a nuclear emergency, and aims at contributing to specific and detailed discussion and activities in the future for the national government and local governments, also within the JAEA.

JAEA Reports

Interim activity status report of "the group for investigation of reasonable safety assurance based on graded approach" (from September, 2019 to September, 2020)

Yonomoto, Taisuke; Nakashima, Hiroshi*; Sono, Hiroki; Kishimoto, Katsumi; Izawa, Kazuhiko; Kinase, Masami; Osa, Akihiko; Ogawa, Kazuhiko; Horiguchi, Hironori; Inoi, Hiroyuki; et al.

JAEA-Review 2020-056, 51 Pages, 2021/03

JAEA-Review-2020-056.pdf:3.26MB

A group named as "The group for investigation of reasonable safety assurance based on graded approach", which consists of about 10 staffs from Sector of Nuclear Science Research, Safety and Nuclear Security Administration Department, departments for management of nuclear facility, Sector of Nuclear Safety Research and Emergency Preparedness, aims to realize effective graded approach (GA) about management of facilities and regulatory compliance of JAEA. The group started its activities in September, 2019 and has had discussions through 10 meetings and email communications. In the meetings, basic ideas of GA, status of compliance with new regulatory standards at each facility, new inspection system, etc were discussed, while individual investigation at each facility were shared among the members. This report is compiled with expectation that it will help promote rational and effective safety management based on GA by sharing contents of the activity widely inside and outside JAEA.

JAEA Reports

Development of burnup/depletion calculation code based on ORIGEN2 cross-section libraries and Chebyshev rational approximation method, CRAMO

Yokoyama, Kenji; Jin, Tomoyuki*

JAEA-Data/Code 2021-001, 47 Pages, 2021/03

JAEA-Data-Code-2021-001.pdf:1.85MB

A new burnup/depletion calculation code, CRAMO, was developed by combining an ORIGEN2 cross-section library set, ORLIB, based on Japanese evaluated nuclear data library, JENDL, and a burnup/depletion solver based on Chebyshev rational approximation method. CRAMO uses the ORIGEN2 cross-section library set ORLIBJ40 based on JENDL-4.0, and the burnup/depletion solver implemented in the versatile reactor analysis code system, MARBLE. It was confirmed that results of CRAMO agreed well with those of ORIGEN2 for burnup/depletion and radioactivity calculation cases. The development of CRAMO made it possible to use ORLIB without using ORIGEN2. It will be possible to provide an easy-to-use processed JENDL data set for burnup/depletion and radioactivity calculations in combination with a burnup/depletion based on Chebyshev rational approximation method. The present version of CRAMO is a subset of ORIGEN2 and can compute only compositions and radioactivities after irradiation. However, since various kinds of outputs of ORIGEN2 can be evaluated by using the composition, it is possible to reproduce many functions of ORIGEN2 by adding post-processing modules.

JAEA Reports

JAEA-TDB-RN in 2020; Update of JAEA's thermodynamic database for solubility and speciation of radionuclides for performance assessment of geological disposal of high-level and TRU wastes

Kitamura, Akira

JAEA-Data/Code 2020-020, 164 Pages, 2021/03

JAEA-Data-Code-2020-020.pdf:3.11MB
JAEA-Data-Code-2020-020-appendix(DVD-ROM).zip:0.56MB

Part of JAEA's Thermodynamic Database (JAEA-TDB) for solubility and speciation of radionuclides (JAEA-TDB-RN) for performance assessment of geological disposal of high-level radioactive and TRU wastes has been updated with subsuming the database for geochemical calculations (JAEA-TDB-GC). This report has focused to update JAEA-TDB-RN after selecting change in standard Gibbs free energy of formation ($$Delta_{rm f}$$$$G^{circ}_{rm m}$$), change in standard enthalpy change of formation ($$Delta$$$$H$$$$^{circ}$$$$_{rm m}$$), standard molar entropy ($$S^{circ}$$$$_{rm m}$$) and, heat capacity ($$C^{circ}_{rm p}$$), change in standard Gibbs free energy of reaction ($$Delta_{rm r}G^{circ}$$$$_{rm m}$$), change in standard enthalpy change of reaction ($$Delta$$$$_{rm r}$$$$H$$$$^{circ}$$$$_{rm m}$$) and standard entropy change of reaction ($$Delta_{rm r}S^{circ}_{rm m}$$) as well as logarithm of equilibrium constant (log$$_{10}$$$$K^{circ}$$) at standard state. The extent of selection of these thermodynamic data enables to evaluate solubility and speciation of radionuclides at temperatures other than 298.15 K. Furthermore, the latest thermodynamic data for iron which have been critically reviewed, selected and compiled by the Nuclear Energy Agency within Organisation for Economic Co-operation and Development (OECD/NEA) have been accepted. Most of previously selected log$$_{10}$$$$K^{circ}$$ have been refined to confirm internal consistency with JAEA-TDB-GC. Text files of the updated JAEA-TDB have been provided for geochemical calculation programs of PHREEQC and Geochemist's Workbench.

Journal Articles

Feasibility study on tritium recoil barrier for neutron reflectors of research and test reactors

Kenzhina, I.*; Ishitsuka, Etsuo; Ho, H. Q.; Sakamoto, Naoki*; Okumura, Keisuke; Takemoto, Noriyuki; Chikhray, Y.*

Fusion Engineering and Design, 164, p.112181_1 - 112181_5, 2021/03

Tritium release into the primary coolant during operation of the JMTR (Japan Materials Testing Reactor) and the JRR-3M (Japan Research Reactor-3M) had been studied. It is found that the recoil release by $$^{6}$$Li(n$$_{t}$$,$$alpha$$)$$^{3}$$H reaction, which comes from a chain reaction of beryllium neutron reflectors, is dominant. To prevent tritium recoil release, the surface area of beryllium neutron reflectors needs to be minimum in the core design and/or be shielded with other material. In this paper, as the feasibility study of the tritium recoil barrier for the beryllium neutron reflectors, various materials such as Al, Ti, V, Ni, and Zr were evaluated from the viewpoint of the thickness of barriers, activities after long-term operations, and effects on the reactivities. From the results of evaluations, Al would be a suitable candidate as the tritium recoil barrier for the beryllium neutron reflectors.

Journal Articles

Visualization of the boron distribution in core material melting and relocation specimen by neutron energy resolving method

Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken

JPS Conference Proceedings (Internet), 33, p.011075_1 - 011075_6, 2021/03

Journal Articles

Reliability of J-PARC accelerator system over the past decade

Yamamoto, Kazami; Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*

JPS Conference Proceedings (Internet), 33, p.011016_1 - 011016_7, 2021/03

The Japan Proton Accelerator Research Complex (J-PARC) is a multipurpose facility for scientific experiments. The accelerator complex consists of a 400-MeV Linac, a 3-GeV Rapid-Cycling Synchrotron (RCS) and a 30-GeV Main Ring synchrotron (MR). The RCS delivers a proton beam to the neutron target and MR, and the MR delivers the beams to the neutrino target and the Hadron Experimental Facility. The first operation of the neutron experiments began in December 2008. Following this, the user operation has been continued with some accidental suspensions. These suspensions include the recovery work due to the Great East Japan Earthquake in March 2011 and the radiation leak incident at the Hadron Experimental Facility. In this report, we summarize the major causes of suspension, and the statistics of the reliability of J-PARC accelerator system is analyzed. Owing to our efforts to achieve higher reliability, the Mean Time Between Failure (MTBF) has been improved.

Journal Articles

Operation experience of Tetrode vacuum tubes in J-PARC Ring RF system

Yamamoto, Masanobu; Furusawa, Masashi*; Hara, Keigo*; Hasegawa, Katsushi*; Nomura, Masahiro; Omori, Chihiro*; Shimada, Taihei; Sugiyama, Yasuyuki*; Tamura, Fumihiko; Yoshii, Masahito*

JPS Conference Proceedings (Internet), 33, p.011022_1 - 011022_6, 2021/03

A Tetrode vacuum tubes (Thales TH589) are used in the J-PARC ring rf system. The operation has started in 2007, and the total operation time is more than 50,000 hours. There is no tube which reaches the end of life except an initial failure in the 3 GeV synchrotron. TH589 has a thoriated tungsten filament and it is carburized to suppress an evaporation of the thorium. The resistance of the filament decreases through the decarburization process after the filament operation has started. The tube constructor suggests that reduced filament voltage up to 10% compared with the rated value is effective to suppress the decarburization. However, the filament current increases even though the voltage is kept constant due to the resistance reduction, and it is observed that an increment of the power dissipation promotes the decarburization. This means that keeping the filament voltage constant is not enough; keeping the power dissipation constant is necessary to prolong the tube life time, and we employ a procedure to decrease the current regularly.

Journal Articles

Nuclide production cross sections of Ni and Zr irradiated with 0.4-, 1.3-, 2.2-, and 3.0-GeV protons

Takeshita, Hayato; Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Hiroki; Maekawa, Fujio; Watanabe, Yukinobu*

JPS Conference Proceedings (Internet), 33, p.011045_1 - 011045_6, 2021/03

To improve accuracy of nuclear design of accelerator driven nuclear transmutation systems, nuclide production cross sections on Ni and Zr, which were candidate materials to be used in ADS, were measured for GeV energy protons. The measured results were compared with PHITS calculations and JENDL/HE-2007.

Journal Articles

Measurement of nuclide production cross-sections of $$^{mathrm{nat}}$$Fe for 0.4-3.0 GeV protons in J-PARC

Matsuda, Hiroki; Takeshita, Hayato*; Meigo, Shinichiro; Maekawa, Fujio; Iwamoto, Hiroki

JPS Conference Proceedings (Internet), 33, p.011047_1 - 011047_6, 2021/03

Accurate nuclide production cross-section data are required for the design of Accelerator-Driven nuclear transmutation System (ADS) such as the design of radioactive waste disposal, design of remote-handling procedure of highly activated components, and evaluation of exposure doses of rad-workers. Although much efforts have been devoted to nuclide production cross-section measurements so far, uncertainties of the measured data are sometimes large as several tens percentage, and there is no experimental data in the GeV energy region even for some of important nuclides. In this study, proton induced nuclide production cross-section of iron, which is the most important constituent element of steel, was measured. The present experiment was compared with calculations by the PHITS code with several physics models including Bertini and INCL4.6 and evaluated nuclear data JENDL-HE/2007. The most significant discrepancy found in this study was the production cross sections via the (p,xn) reaction. It was suggested that further improvements, such as the in-medium effect on the nucleon-nucleon scattering and the Pauli blocking, were required in the intra-nuclear cascade models used in this study.

5685 (Records 1-20 displayed on this page)